Fast Mimicking Diet 3: The Fasting Part

Fast Mimicking Diet 3 The Fast Mimicking

References: Longo: The Longevity Diet, [Science], Science DirectCellCell Metabolism,

I like to eat. I get hungry. What is it about fasting that makes me do better? Let’s review. Valter Longo found that there were two processes in yeast (very primitive organism) and mice (sophisticated mammalian organism) that respond in the same way. RAS and TOR. Those are the two pathways that appear to accelerate aging. Sugar turns on RAS-PKA and extra protein turns on TOR-6SK Growth Hormone Pathway. If you can down regulate the RAS pathway, you increase the rate of clearing out old, dead, malfunctioning tissues and organelles. That’s called autophagy. TOR is an internal monitor of nutrient density and controller of cell growth. Can’t grow if you don’t have enough food. Dial TOR down and cells stop dividing and go into hunker down mode. Alter those two pathways and presto, chango, you have gotten to the root cause of aging in humans. That discovery, that these two pathways are fundamental to all life on this planet, starting with yeast and moving all the way up to humans, is Longo’s key contribution to modern understanding of aging.
Fasting turns both those pathways in the right direction. It takes about 24 hours to use up the glucose in your liver, stored as glycogen. The human body then switches to burning fat from stores in fat cells. The brain and body utilize ketone bodies in a process termed ketolysis, in which acetoacetic acid and 3-β-hydroxybutyrate are converted into acetoacetyl-CoA and then acetyl-CoA. In yeast, glucose, acetic acid and ethanol, but not glycerol which is also generated during fasting from the breakdown of fats, accelerate aging. Not glycerol. Did you get that? There is one carbon source that doesn’t turn on the nutrient recognition pathway. Glycerol is the 3 carbon fragment that holds fats together in tri-“glycerides”.

Fasting for 3 or more days in humans causes a 30% decrease in circulating insulin and glucose, as well as a reduced level of insulin-like growth factor 1 (IGF-1), the major growth factor in mammals, which together with insulin is associated with accelerated aging and cancer. Fasting for five days results in a 60% decrease in IGF-1and a 5-fold or higher increase in one of the main IGF-1-inhibiting proteins: IGFBP1. This effect on IGF-1is mostly due to protein restriction, and particularly to the restriction of essential amino acids, but is also supported by calorie restriction since the decrease in insulin levels during fasting promotes reduction in IGF-1. In humans, chronic fasting does not lead to a decrease in IGF-1 unless combined with protein restriction.
Did you get all that? It’s the protein restriction that matters. Five days appears to be the time period in which maximum reduction of cancer growth factors and insulin occurs. You can trick the system with some glycerol which doesn’t register as a sensed nutrient. And we have some markers of metabolism to show your success. 5 days. Reduced protein, animal in particular. Cut the calories down to low enough to turn on and maintain ketogenesis. Sounds like about 800 a day will work. The goal isn’t to lose weight but to turn on anti-aging genes.

WWW. What will work for me. Well, I’ve finished one cycle for myself and lost 6 pounds while doing it and another two pounds over the subsequent three weeks. Not bad. I’m going to do two more cycles and then repeat my own lab tests. Glycerol makes an interesting little sport drink. It’s slightly sweet and with a bit of flavor added from a tea, it’s not so bad. I’ve bought some hibiscus tea.

Pop Quiz


  1. What nutrient can you consume that is slightly sweet and doesn’t trigger calorie sensing? Answer: Glycerol
  2. What amino acid turns on aging, and absence turns off aging? Answer: leucine in particular.
  3. Five day fasting results in a 60% decrease in what? Answer: IGF-1 or our Growth Hormone surrogate marker.
  4. Along with that, you get up to a 5 fold INCREASE in what IGF-1 inhibitor? Answer: IGFBP1.
  5. What lab tests might you want to know if you were getting success in your fasting methods? Answer: Glucose, insulin, IGF-1 and IGFBP-1


Fast Mimicking Diet 2: The Human Method Simplified

Fast Mimicking Diet 2 The Human Method

References: Longo: The Longevity Diet, ScienceGut,

Last week we heard about yeast being used to explore what genes are needed to make the right environment for longevity. Valter Longo’s hypotheses was that those same genes exist in mammals, humans included. If he could make the same changes in longevity by diet and its effect on genes in mice that he made in yeast, he would have a huge scientific win. He started looking at mice and their genetic code. Mice live about two years and start getting cancer around a year and a half. That makes a useful model.
What did he find? The exact same thing. Two key ideas. Extra sugar activate the PKA gene. That causes trouble. Mice with lower PKA activity, live longer. That simple. And extra protein activates the growth hormone receptor and TOR-6SK and increases the level of insulin and insulin like growth factor. Certain amino acids appear to be more potent at activating the TOR-6SK complex, like leucine. which then accelerates aging. That’s it. The foundation of aging down to two simple key processes. Too much sugar, and too much protein. That duo is the foundation of what Longo called his “basic juvenology research”, one of his Five Pillars of Proof.
The story is all about the nuance of glucose and protein.

Our body runs on glucose. It is our preferred food for our brain, if present. The story is all about how it is delivered and what happens to our bodies if we get too much, too fast. When you get low glycemic carbs from vegetables, your blood sugar rises very slowly and you hardly get an insulin response. (For example, it takes 19 cups of asparagus to make 50 grams of glucose). If you have a diet of broccoli, spinach and green beans, you hardly get any insulin spike at all. A substantial portion of those vegetables make it to your colon where the biome in your colon changes those coarse fiber rich foods to short chain fatty acids, just like in gorillas (See this column from 2 weeks ago). Just like with gorillas, a high fiber diet actually results in substantial increase in fatty acids, or fat. Adhering to a Mediterranean Diet appears to make this possible, all due to the activity of the biome in your gut.
A high protein diet changes your gut biome and increases many markers of cardiovascular disease,TMAO (trimethylamine oxide). So we have seen these changes from other lines of research as well.

We are even beginning to understand the incredible complexity of our gut biome. Our colon is there to take high fiber foods and digest them for us, releasing short chain fatty acids, turning low glycemic vegetables into short chain fatty acids. Bacteroidetes are more abundant in the stool samples of those eating a mostly plant based diet, while Firmicutes were more abundant in those who eat a more animal products diet. From those major families, the specific bacteria Prevotella and Lachnospira were more common in vegetarians and vegans while Streptococcus is more common among the omnivores with higher meat intake.

Can we take this to humans with specific guidelines? Well yes. This is what Longo has come up with. Protein should be about 0.31-0.36 grams per pound per day, of which about 40 grams for women weighing 130 and 60 grams for men weighing 200. Once you hit age 65, you likely need a little more protein, but not that much. Just a little.

Your diet should be rich in healthy fats like olive oil, fish and coconut oil, walnuts and almonds. These fats essentially do the same process of helping you get more calories from fat, like the gorilla. Trans fats and saturated fats are to be avoided. And there should be plenty of Healthy Carbs – the type that make it to your colon and turn into fat. They generally have a glycemic index under 20, or 45 max which would include beans (if you aren’t lectin sensitive). The carbs that get digested in your small bowel and make sugar spikes look like ground flours of any kind, sugar in particular, high fructose corn syrup in double particular, fruit juices or too much modern fruit (modern apples are nowhere near the original Himalayan apple – ditto for pears, bananas, on and on that we have altered in the last 100 years to be much richer in sugar). Most grains are just too rich in carbs to be too good for you, unless you have changed them to be resistant, usually by cooking and then cooling. Same with potatoes. The original potato from Peru was a fine food with a GI of 40. Now it’s a glycemic index of 80-95, unless you boil it and cool it making it resistant. (Is this enough to confuse you a little?)
Finally, cut your meals down to 2 and a snack. Try to fit all your food into 11-12 hours of eating and not for 3 hours before bedtime. Breakfast is NOT the meal to skip as there is plenty of evidence that that habit correlates with many illnesses.

Ok? Next week, we will discuss how to FAST and do it right so that you kick start your genes into being supercharged. It’s cool, and it works.
WWW. What will work for me. This is evidence based and I get it. I’m so fascinated that I drew my own lab tests and started doing it full bore, as much as can be done living in a modern 8-5 work world. It’s the fasting part that has my attention. I’ve completed my first 5 day session and intend to do it again. It wasn’t so hard. More next week.

Pop Quiz


  1. Animal protein appears to shorten longevity? T or F                           Answer: True
  2. We need animal protein to support our healthy brain? T or F          Answer: Again true. Conundrum? Yup. We get B12 only from animal sources. But nature doesn’t care much about you once you have made your babies and passed on your genes.
  3. A high carb diet is bad for you. T or F                                                    Answer: All in the details. High in low glycemic green vegetables, it’s very good for you and is actually a high fat diet.
  4. The über enemy of nutrition is?                                                           Answer: Sugar, fructose in particular when it gets above the 6% found in fruit.
  5. How much protein can I have a day?                                                   Answer: 0.31-0.16 grams per pound when under 65 A little more after. But not much.


Fast Mimicking Diet 1: Starting With Yeast

Fast Mimicking Diet 1: Starting with Yeast

References: Fabrizio Science 2001Science Translational MedJBCPNASGenetics,

You’ve heard of fasting and how it encourages the body to live longer. Well, sort of. The problem is, you like to eat. And eating is critical to keeping you alive. Let’s turn it around a little and come at it from a different way. Can we make the argument that we can identify the process by which changing patterns of food, including low calorie periods of time, turn on “good genes” and what are those “good genes”?
Turns out no one had looked at aging from that point of view prior to Valter Longo. He set out on his career with the premise that the way to explore healthy aging should be to identify and encourage the genetic processes by which we can build resiliency and healthy aging. He started with yeast because they live just a few days and all 6000 of their genes are known. It’s easy to make mutations and delete a gene and see what happens. Here is what he found.
In yeast, if you take away all nutrients from them except water, they live twice as long. Hmmm. If you add back nutrients, one at a time, the only one that accelerates aging… the ONLY one, is sugar. It activates two genes called RAS and PKA and inactivates enzymes and factors tha protect against oxidation. Boom, there he was. He found a key pathway in the gene signaling pathway that caused aging. And when he came out with it, as the basis of his PhD thesis, it was so new and so far ahead, no one would believe how a lowly graduate student could come up with such a significant finding, and he was ignored and avoided. He teamed up with folks looking at more complicated organisms, worms, and found much the same but to jump from yeast to humans was too big a paradigm shift for folks to believe, and thereby publish his data. It took 6 years for him to get published in Science, and another eight years to get a study on humans showing how down regulating the human growth hormone gene helped humans live longer Sci Trans Med would be published.
He discovered that dwarf yeast and mice lived 2-6 times longer, so he sought out populations of dwarf humans in Ecuador, the Laron Syndrome folks, who are tiny dwarfs that smoke, drink, eat fried food and don’t get any diseases of aging like diabetes and heart disease. Studying that population found that their defect in their growth hormone gene forced their body to go into constant regeneration mode. Studies of their brains showed that their brains were much younger in function than the rest of their bodies. That was the key. Regeneration mode. What on earth was going on? He suddenly found his ideas being accepted. Even the Pope wanted in, and he took some of his Laron buddies off to Rome to review his finding.

Starting with that research, Longo noted that aging is the risk factor that is common to all disease. The older you get, the higher your chances of getting…… name it, cancer, diabetes, heart disease, Alzheimer’s. Hence, start with that problem. Reduce the aging pathway and those diseases will take care of themselves. That’s why the Laron stayed “healthy”, despite all their bad habits. So, can we duplicate that by changing the way we eat? Yup.
What is the simplified version that we can understand? Easy. There are two pathways that appear to accelerate aging. The Sugar pathwy turns on RAS-PKA and extra protein turns on TOR-6SK Growth Hormone Pathway. If you can down regulate the RAS-PKA pathway, you get autophagy – you gobble up old dead stuff and get rid of it. TOR-6SK is a critical monitor of nutrient density and controller of cell growth. Dial TOR down and cells stop dividing and go into hunker down mode. Alter those two pathways and presto, change, you have gotten to the root cause of aging in humans. That discovery, that these two pathways are fundamental to all life on this planet, starting with yeast and moving all the way up to humans, is Longo’s key contribution to modern understanding of aging.

How can you alter those two? Next week.

www.What will work for me. I’m enthralled with the beauty of creation. From yeast up to humans, we can follow the same biological processes down at the cellular level, and then follow them up through all biology. The Laron People have a terrible mutation in that they end up being only 3-4 feet tall, and then live to 90 with no diseases. And all of this is connected to how we eat. Next week.

Pop Quiz


  1. If you feed yeast one food, they die much faster. What is it?                    Answer: sugar
  2. The one process that makes years live twice as long is?                            Answer: feed them nothing but water.
  3. Who are those people in Ecuador that live to be 90 with no diseases, despite eating fried food and smoking like chimneys?                                                                  Answer: The Laron who have a defect in growth home production – and end up 4 feet tall.
  4. What two pathways do we share with yeast, and mice, and worms, and snakes, and monkeys and everything in between?                                                            Answer: TOR and RAS
  5. What do TOR and RAS do (BONUS POINTS)?                                                 Answer: RAS measures nutrients and turns of housecleaning when there aren’t any. TOR measures nutrient density and turns on “hunker-down” mode when there is little.

Lectin Lesson 5: Resistant Starch is a High Fat Diet – Ask the Gorillas!

References: Steven Gundry’s Plant Paradox, Journal NutritionJ. Internal MedNature,

Once upon a time our diet was very similar to gorillas. Say some 10 million years ago, and prior. We ate leaves, in Africa. Only 8 million years ago did we diverge from chimpanzees and only 2 million years ago did our brains start getting bigger in response to eating meat. We had learned to run long distance, which made us the most successful hunter in Africa. But our guts were still used to eating leaves, and designed to do so.

What happens on eating leaves? Leaves are very dense, high fiber foods. Gorillas eat about 16 pounds a day, in today’s gorilla. The gorilla can’t digest those leaves, but their gut biome can. The bacteria in their gut break down the leaves and convert the cell walls of those plants into tiny, short chain fatty acids. Net effect, the gorilla’s diet becomes 70% fat, ideal food for brain and nerve cells. What looks like a high fiber, low fat diet turns into a high fat diet when the gut biome is properly nourished and contributes like it was designed to.
Now, let’s make a pivot and see if we can find anyone on this planet who eats a high fiber, high fat diet. We end up with a unique society in remote New Guinea called the Kitavans. A Swedish Researcher, Lindeberg, did a studyon the Kitavans who eat virtually no western food, 70% carb, and 20% fat and have absolutely no obesity, no heart disease, no diabetes and live into their 90s, while smoking. Imagine that!
How do they do that? They eat a ton of resistant starches in the form of taro, coconut, fruit and fish. We find much the same from Tokolau, another remote Polynesian Island with no western food: just mostly coconuts and fish.

The key is that idea of resistant starches. These are “carbs” that don’t act like most carbs. They don’t get digested in the small bowel. In the process of cooking their molecular shape is changed.  They are passed on through to the lower gut where they are ideal foods for your gut bacteria. Your colonic biome goes nuts with happiness and digests them down into short chain fatty acids, turning what looks like carbs into fat. This is the same hat trickthe gorilla does in their gut. Not only that, with all that food, the bacteria make a thick coat of mucus in your gut and you make a much more effective barrier to absorbing those dangerous lectins and LPSs fats that turn on inflammation – so you make a better natural barrier. Resistant starches reverse the damage of red meat. Now, many resistant starch foods are high lectin foods: boiled and cooled potatoes, rice – cooked and cooled, beans and oats. Gundry acknowledges this and advises you eat green bananas. Not ripe ones where the carbs are sweet and absorbed, but green where they are still resistant.

Turn on the lens of resistant starches and suddenly long lived societies around the world come into focus. They all have the same features in common. Their diets show high fiber diets of resistant starches, which their colonic biome turns into short chain fatty acids. Their brains get high fat intake. On Okinawa, the fiber is in the form of yams. Sardinians and Cretans eat high fat in the form of olive oil. Seventh Day Adventists are vegetarian, but eat about 60% fat from olives and peanuts. The Mediterranean diet goes straight for the olive oil, making an approximate high fat diet. We know your brain does better eating fat. It has to be the right fat. And having your colon make it for you appears to be the right concept. Thank you, gorillas.

WWW.What will work for me. Gundry is turning our dietary concepts on its head. But data is data. The Kitavans make for a unique example. Ditto from Tokolau Island(70% of diet from coconut). There is rice being developed on Okinawa that is particularly resistant. I’m curious if I can find it. I’m not taking up smoking. But will I eat a bit of rice now? Yes, if it has been cooked and then cooled down. Raw banana, well, I’ll try one.


Pop Quiz

  1. Gorillas eat a high fat diet? T or F                                                    Answer: False, they eat a resistant starch diet that is turned into high fat in their gut
  2. We can find examples of high fat diets all around the world. Name some.
    Answer: Sardinians, Tokolau, Crete, Loma Linda Adventists.
  3. Resistant Starches do what?                                                            Answer: Get through your small bowel undigested and give ideal food to your colonic biome where they make small fatty acids, ideal brain food.
  4. Folks eating high carb diets are in trouble for diabetes? T or F        Answer: Stupid question because there is no nuance. Eat a pizza and the high glycemic wheat crust and fatty cheese and meat will instantly turn on weight gain. Eat a high carb diet of taro root and raw bananas, and you get no weight gain.
  5. If you smoke, you can get away with it? T or F                                     Answer: True, if you move to Kitava and eat raw bananas and taro root. Otherwise you just die sooner.




Lectin Lesson 4: What Elephants Having Heart Attacks Teaches Us About Cancer

References: Steven Gundry’s The Plant Paradox, CirculationScience Direct,Front Oncol., Glycobiology,

Ok, caught your attention? Elephants having heart attacks? Yes, it’s true. Now, when elephants live in their natural habitat that has sufficient tree and brush forage, they never get a heart attack. In the last couple of hundred years they have lost habitat and been driven to eating grasses. Elephants don’t eat grass when they have natural leaf habitat – they eat leaves. When they eat grass they develop coronary disease, just like us. Why does that happen?
We share an odd and uncommon sugar with elephants. It is called Neu5ac. I’ll call it N-A. It’s a member of the sialic acid family of sugars. We share it with shellfish, chickens and elephants. When we diverged from chimps 8 million years ago, we started making Neu5ac (N-A). Chimps make Neu5gc (N-G). As do every other mammal including the ones we eat like cows, goats, sheep, pigs. This sugar, N-A) is like a signal in our gut cells and our arteries. And grain based lectins bind avidly to it. WGA, the lectin in the wheat germ, binds avidly to it. Avidly. But grain lectins don’t bind to N-G.
Here’s where the link happens. When we eat red meat containing Neu5gc – N-G, your immune system recognizes it as foreign and makes antibodies to it. Those antibodies then turn around and attack your own Neu5ac (N-A) receptors. You get antibodies on your blood vessel walls. You call in white cells. Coronary artery disease is off and running. When elephants eat grasses, they get the same cross reactivity. Something about having grass (wheat) based lectins that attach to Neu5ac and eating the Neu5gc form of the sugars makes for that autoimmune attack.
Now, swing over to cancer. Human cancers have a lot of the Neu5gc protein in them. They put it on their surface as a means of hiding from our immune system. Wait a minute! We don’t make it. Human cells cannot make Neu5gc. Right, we don’t. Then how does the cancer get it? From our eating it in red meat. That may be the link between our eating excessive red meat, and having more cancer. The more red meat you eat, the more N-G you get to supply cancer cells with camouflage. Did you notice that chicken and shell fish don’t have N-G. They have N-A, just like humans and elephants. When you eat chicken and shell fish, you have less risk of heart disease and cancer.

The mechanism that is driving both of these phenomenon is the presence of these sialic acid sugars called Neu5ac versus Neu5gc. Their subtle name difference is the whole universe of immune recognition. That simple little alteration is all it takes for your immune system to go the wrong direction and start a process that leads to the slippery slope of coronary artery disease, or cancer.

WWW. What will work for me. This is a smoking gun. It tells us the clear mechanism by which this elegant, delicate signaling system shifts our immune reaction against either ourselves or against our own immune vessels. Or cancer. It’s simple. We get B12 from red meat. We have to have it. A tiny bit. I mean tiny bit. Seems like we need to start thinking about how we can change the balance of calories. If ketogenic eating is important for our brains, then it has to be with healthy fats, not meat. And it all comes down to those magnificent gentle animals, elephants.

Pop Quiz


  1. Elephants were designed to eat grasses? T or F                                               Answer: False Leaves
  2. When elephants eat grasses they develop what illness in common with humans?           Answer: Coronary artery disease
  3. The key link in the immune response is a lectin binding sugar called?                             Answer: Neu5ac – a member of the sialic acid family of sugars
  4. The principal damaging lectin in wheat, WGA binds to which of the two sialic acids – Neu5gc or Neu5ac?                                                                                                                                Answer: N-A not N-G
  5. Human cancer cells get their camouflage from?                                        Answer:     Red meat Neu5ga.



Lectin Lesson #3: How Lectins Make you Fat

Reference: Gundry’s The Plant ParadoxAm Jr Physiology,

Did you know that humans lost height and brain case size in the 1000 year transition from hunter gatherer to wheat grower. Gundry quotes this in his book as what has been discovered at archeological sites from those time periods. Civilization had its costs? All so that we could have kings and cities and armies and compete with your neighbors more effectively. Hmm. And we started domesticating pigs and cows, sheep and goats….so we didn’t have to go hunting. Here is Grundry’s conjecture. Wheat and lentils are amazing grains. When you eat them, you gain weight faster and more efficiently to that you can make it through winter more efficiently. Civilization liked wheat, because by putting calories on into storage, those who ate it lasted longer.
Now, extend that to today and see if it’s any different. What do we feed cows before we slaughter them for market – corn and beans? Wild pigs are lean animals. Domesticated pigs have lots of fat (we call if bacon) when fed corn and beans. Those foods make animals fat too. So Gundry’s hypothesis is that humans didn’t choose wheat and lentils to grow because they could be stored, but because you put weight on the most effectively with them. That’s his Plant Paradox. The very plants (wheat and beans) that allowed our ancestors to develop civilization and store calories for the winter were the same plants that hastened our demise from metabolic diseases. Now, that was hidden for the last 9,000 years because we died of measles and tuberculosis and cholera by age 30 anyways, and didn’t see the degenerative effect of inflammation caused by these grains. Grains became the means to civilization not because they could be stored, but because they were the most efficient means to put on weight and make it through winter. They promote more calories into fat deposit than any other food. And then, isn’t it curious that milk from black cows, so called A-1 milk, has lectin qualities to it too in its BMC-7 fragment, and promotes weight gain.
Ok, I get the historical conjecture but is there a coherent biological explanation for how this works? Yes, indeed. It goes as follows. Two key processes are going on.

First, the disruptive effect of the lectin in wheat called WGA. Wheat germ agglutinin. It looks a lot like insulin. Acts like insulin. That’s what lectins are, proteins that mimic mammalian proteins and cause damage by disruption. WGA mimics insulin, badly. Insulin attaches to a cell for a tiny amount of time, then lets go. WGA doesn’t let go. On a fat cell, the message is to take up glucose, forever and ever. That fat cell gets fatter. On a muscle cell, however, the message is to block insulin effect so muscle are starved. Again, WGA doesn’t let go so the real hormone that should be on the receptor can’t dock on its receptor and tell the muscle cell to take up glucose and run with it. Same effect on nerve cells: WGA clamps on and doesn’t let go. Nerve cells are starving. But they send out the message to the organism: “Eat more.”
Even more disturbing isrecent evidence has emerged that lectins can climb up the vagus nerve from the gut to the brain, damaging the substantia nigra, the seat of Parkinson’s disease. Indeed, cut the vagus nerve and the risk of PD drops 40%.
The final argument to support Gundry’s hypothesis might be called the Common Soil Hypothesis – that the mechanisms of metabolism and inflammation are curiously linked. You got fat because your body is at war with itself. And it goes as follows. The lectins set off your “Tiny Little Radars”, your Toll Like Proteins, that reside in your blood vessels and fat cells. They set off cytokines (your body’s fire alarms) calling for white cells to respond to clean up the invading bacteria. Except there are no bacteria. It’s just lectins. But the white cells show up. And your body shifts into war mode. Energy goes to the troops, the white cells. The stay-at-home folks, (Gundry calls them civilians but you think of them as muscle and brain cells) go on war rations and get less. Hence, you become insulin and leptin resistant not because you are overweight, but because your body is inflamed from all the fake lectin signals setting off fire alarms about invading bacteria. Your body is at war, thinking you have been invaded by bacteria, and you are all pumped up and ready to defend. Except that there is nothing to defect. The home folks starve. Fat cells get bigger.

Get it? Stop the war, send the troops home. Weight loss follows automatically. Stop eating lectins. That includes A-1 milk and cheese, nightshade plants, wheat and beans and most of all, genetically modified foods with their genetically inserted extra lectins.

www.What will work for me. This is a paradigm shift type of thinking, but it makes perfect sense. I get it. I just have to figure out how to implement it. And wheat is lurking behind every food in America. And every meat product was raised on lectin foods: corn and soybeans so the lectins in those foods are still there for me to absorb. I have to live with this a while. But I can shift a little. Less beans, less wheat. One step at a time.

Pop Quiz

  1. You are leptin resistant and fat because you eat like a pig? T or F                      Answer: That’s backwards, unless you take eating like a pig to mean you are eating corn and beans, lectin foods. The proper answer is that leptin resistance and fatness comes from the natural shifts your body makes to counter the fake messages caused by eating lectin containing foods. You eat secondarily because your brain cells and muscles are starving, ironically.
  2. Lectins set off inflammation because they activate TLRs? What are TLRs?
    Answer: Toll Like Receptors or “Tiny Little Radars” in Gundry’s clever nomenclature – your natural bar code readers watching what’s in your blood to sort our friend from foe.
  3. You can make great bacon with wild boar? T or F                                                  Answer: Patently false. To make bacon on pigs, you have to feed them corn and beans.
  4. To make bacon on you, the best foods to do that with are?                             Answer: Same as with pigs. Corn, wheat and beans
  5. Ipso facto, to lose weight you need to ?                                                                Answer: create the environment whereby you “stop the war”, turn off inflammation, rid yourself of lectins, eat what nature intended you to eat.



Lectin Lesson 2: How Lectins Cause Damage with Inflammation

References: American Heart Sci Meetings,Jr, ImmunologyResearchgateWikipediaAthersclerosis,

Just what is going on with lectins? What’s the big deal? Do they really cause trouble?

To understand those questions, you have to understand the complement system in your body. This is not about saying a nice thing to you about your hair, or your necklace, this is about your basic lizard brain immune system, your innate immune system. Your innate immune system is the first to respond to threats with non-specific responses. If you think of a series of dominoes, each of which knocks over two more, the innate immune system is the means by which your body kicks back immediately against external threats and makes immediate reactions that happens quickly in response to “invasion”. A cascade of chemicals create tags to place on the invader to tell a white cell to eat that particular invader, (Opsonization is the fancy term) or punches a hole in the wall of the invader with donut shaped proteins so the invader leaks its guts out. You can imagine, this has to be carefully controlled as if it balloons out of control, you get the shaft and your own cells get damaged. The adaptive system, layer two of your immune response, takes longer to gear up and make specific antibodies shaped precisely to attack the invader, or specific white cells armed with bar code readers to find and destroy the invader. Doing all that takes time. In the short term, the complement system is it.
There are several pathways into the complement system. The classical pathway, the alternative pathway and the LECTIN PATHWAY. Did you get that? The lectin pathway is one of the ways you set off your innate immune system. To understand this pathway you have to be able to read the following sentences without pausing: This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). If you drill down into that, it simplifies to the sugar mannose that is part of many plant lectins, and your complement system watching for that sugar signature to fire off a response. Ficolins are protein lectins that come in patterns of five at a time, and also set of the lectin pathway.
Here is the rub. There is now evidence that a low lectin diet will decrease endothelial dysfunction (code word for the first step in coronary artery disease).

What’s the final implied conclusion? This is a new way to look at heart disease. Lectins play a roll is setting off inflammation. That’s a given. Lectins in the human diet have increased dramatically in the last 200 years as our foods from all over the world have become part of a new diet that never had those foods before. And in the 21st century, we have added all sorts of chemicals to our environment that allow our gut to “leak”: NSAIDs like ibuprofen and naproxen, steroids, antibiotics, PPIs. And we have genetically modified many of our foods to create grains resistant to insects by intentionally inserting more lectins into the genome of plants that we then eat. We have tilted the playing field. The slope is in the wrong direction to maintain health.
WWW. What will work for me. I am eager to learn this stuff. I was at a small plate restaurant this weekend and intentionally chose a low lectin dinner: grilled Brussel’s sprouts and calamari. I slept better last night. Hmmm. Don’t know if that’s linked. One meal does not a heart attack prevent, but Gundry has shown that a low lectin diet will reduce damaged blood vessels “endothelial dysfunction” in just a few months. I’ve been off ibuprofen now for two weeks. Never again.

Pop Quiz


  1. The Complement System is the method of English Manners and Polite Behavior. T or F Answer: well, yes, true, but not here. In your immune system, it’s your kick boxer – the first line of defense against invasion. Not polite
  2. Lectins set off the complement system. T or F                               Answer: True. There are 3 pathways to set it off and one of them specifically is started with lectins.
  3. Many lectins have a simple sugar on them that is an ID of trouble. What is it?          Answer:   Mannose
  4. You can reduce endothelial dysfunction with a low lectin diet? (What’s that?  It’s part of what we simplify to call high blood pressure, but is a bigger picture of damaged blood vessel lining.)                                        Answer:  Today’s takeaway
  5. We have had an increase in lectins in our diet in the last 100 years?                            Answer: Not only an increase by new foods, but intentionally added to many foods by genetic engineering, feeding lectins to our animals, and then the coup de grace of adding leaky gut from modern chemicals.


Lectin Lesson 1: What Are Lectins?

References: Int Jr of Plant ChemJr Cereal SciNutrients,

Ever had someone tell you that they are allergic to wheat? You scoff and say they don’t have celiac disease. And they don’t. They are sensitive to LECTINS. And lots of people are. If you feel your tummy upset when you eat bread or wheat, read on. This is for you. Actually, this is for all of us.
What are lectins? Plants make them to deter animals and insects from eating the plant. They are poisons. They are plants main way to protecting themselves. And plants have been very clever in figuring out how to do that over millennia. They have devised may lectins that look very close to the normal proteins inside of animals, but not quite the same. You see, if you make a close copy that messes up the animal by making fake signals, you make it feel sick when it eats you. So it stops eating you.
What did we do with wheat? In the 1950s, Borlag crossed old fashioned wheat with two grasses to make wheat go from the 14 chromosomes of old fashioned natural wheat to the 42 chromosomes of modern wheat. All the lectins in grasses got carried along into the new wheat. Now mind you, lectins are at very tiny levels. They aren’t the main show like carbs, or protein, or fat. They are like hormones, active at extremely low doses. This is how they have gotten by below the redar up till now. This is why you haven’t heard about them.

But lectins work exactly at that level. They act at very tiny doses like trace hormones. In your body you have millions of TLRs, Toll Receptor Proteins that are basically bar code readers. They are lining your blood vessels looking for invading bacteria and viruses and poisons. When their bar code gets matched with an invading protein, they stimulate the making of chemical signals to call in help. Those signals are called cytokines and your body makes a whole mist of the cytokines. There are dozens, if not hundreds of cytokines that all rise in a chorus of response to make an integrated immune reaction to the invader.

That immune response is meant to make an animal avoid that plant. The animal and plant, living in the same ecosystem get used to each other. They learn to tolerate, and accommodate each other. The animal’s gut bacteria develop a tolerance and acceptance of the plants lectin poisons, and start making a healthy immune reaction that is good, when done in tiny doses.

That all happens when animals live in the same ecosystem and eat the same food for millions of years. Humans did that up till about a million years ago. Then we learned to cook. Cooking inactivates a lot of lectins, so humans could add many more foods to their diet. All was well and good, as long as we humans were living in Africa and the Mediterranean, where we had reliable, accommodated foods. But then the thunderbolt happened. We learned to grow wheat and lentils in the Levant. 10,000 years ago, we learned agriculture. This allowed us to make cities and armies and increase our population. We didn’t have to go hunting game and could have farms and armies and kings. But we were eating a new food our guts weren’t really used to. The lectins really weren’t all that good for us. Over the next 1000 years, we lost a foot in height, a decade in longevity, 15% off the size of our brain but eating lectin rich foods instead of wild game. But the bargain with the devil was already done, civilization had begun. What would come next?
Read next week.
WWW.What will work for me. We all need to learn about lectins and their subtle but incredibly perverse effect. This applies to me and you. The scope of lectins is really the story of all our modern diseases. This is the underpinnings of inflammation, the engine that drives our common modern illnesses. Read on. We need to know this.


Pop Quiz

  1. What are lectins?                        Answer: trace substances, usually proteins made by plants that function to deter insects and animals from eating the plant.
  2. Plants and the animals that eat them get used to each other over million of years. T or F Answer: True. So humans come out of Africa and have gut bacteria that are familiar with African plants.
  3. How do lectins do their function?                                   Answer: they have often evolved to look quite similar to proteins inside the animal: close but not quite so they make dysfunctional actions that make the animal sick.
  4. Lectins are detected in animals by their “what” system?                        Answer: TRP or Toll Receptor Proteins lining all blood vessels.
  5. When humans started eating wheat and lentils in the Fertile Crescent 10,000 years ago, what happened.                                                              Answer: Civilization got started in cities and settlements, but humans also got shorter with smaller brains.   Wheat and lentils both contained new lentils previously unknown to humans. 10,000 years is not enough time to evolve new defenses to new lectins.


Eating Red Meat Raises Your Mortality

References: Archives Internal MedicinePNAS,

500,000 people aged 50-71 were followed for about 10 years with extensive questionnaires about food frequency. There were some 48,000 deaths in the men, 23,000 deaths in the women. This is a big study so should have validity. It was observational, not randomized, placebo controlled. They statistically controlled for age, education, marital status, family history of cancer (yes/no) (cancer mortality only), race, body mass index, smoking history, physical activity, energy intake, alcohol intake, vitamin supplement use, fruit consumption, vegetable consumption, and menopausal hormone therapy among women.
The findings are pretty interesting. Those who ate the most red meat had a 30% increased risk of dying. In women, those eating the most red meat were 36 percent more likely to die for any reason, 20 percent more likely from cancer and 50 percent more from heart disease. Men eating the most meat were 31 percent more likely to die for any reason, 22 percent more of cancer and 27 percent more from heart disease.
On the first blush, one things it must be the fat, and that is one of the reasons given in the article. I want you to think about possibly other reasons.

Here are a few. Ferritin. The more iron you consume, in the form of red meat, the higher your ferritin climbs. This has happened on Okinawa and there the mortality has risen sharply for cardiovascular disease and Alzheimers. Iron is a two edged sword. You need it badly if you are a young woman having babies every two years, our paleolithic past. But our iron absorption rate damages us badly when we get to menopause and stop losing iron through menstruation or babies. And men always have more iron. In fact, men live as much as 10 years less than women. Only 30% of that can be attributed to climbing ladders. A good portion of that is the excess mortality driven by the increased burden of ferritin in men, who never have a chance to lose it. The least Alzheimer’s in the world centers on places with ferritin of 20. American men average over 200 – some are as high at 6-800 and don’t know it.

Another reason. Lectins. In America we feed our animals corn. You can trace the corn through the food supply because of it’s mixture of carbon subtypes. The average American is 65% corn. The average European is 5%. Corn is loaded with lectins, proteins that bind to sugars and set off immune messages internally. You are not only what you eat, but what you ate, ate. When you eat a cow raised on GMO corn, or a chicken raised on GMO corn, you get the lectins from that GMO crop passed on to you. Lectins bind so tightly to sugars, and are pretty resistant to degradation, they survive the transfer. Corn makes cows fat, pigs fat, chickens fat and you fat. It’s not just the calories in the grain, it’s the hormonal effect of the lectins.
American red meat is full of ferritin, full of lectins, full of hormones all at the trace level that has been blessed as safe. It’s not safe. Eating red meat makes you die faster.
www.What will work for me. I’m startled by this. It is changing my mind. The ketogenic diet can’t be one of pure red meat. I’ve measured my ferritin and it was 160. I’m choosing salads much more now with traces of ocean raised fish. You should know your ferritin and get it down. You drop some 40 points every time you donate blood. Next week we will start a series on Lectins.

Pop Quiz


  1. Eating red meat is good for you. T or F                                              Answer: Way too complicated for T or F. You have to get B12 from red meat so we hav got eat a little. And women making babies need the iron. But men almost never need extra iron.
  2. If I cut down on red meat such that I’m at a serving a week, what will my mortality do compared to an every day kind of guy?                                             Answer: Down 30%
  3. American’s are composed of more corn based food that Europeans, by how much?                                                                Answer: We don’t have a huge study but 65% to 5% is one data point, American to European. Yes, you are made of 65% corn protein or fat.
  4. Name another source of possible problems with American red meat?                   Answer: by eating so much corn, the lectins in corn are passed onto the person who eats them
  5. What are lectins?                                                                                     Answer: proteins plants make to poison their predators. They attach to our feed animals meat and then we get them. They have many hormonal side effects. Read more next week.


Birth Control Pills Cause Breast Cancer


Birth Control Pills Cause Cancer

References: NEJM Dec 2017New York Times,

That’s it! They do. Birth control pills increase your risk of breast cancer. The issue should be, how much risk are you willing to take for the benefit of birth control. Pregnancy is not a benign condition either. It has risks. Labor and delivery used to be just about the most common cause of death in women, until we got modern medicine, ultrasounds, sterile technique, etc
What’s the data? The study followed 1.6 million Danish women for over 10 years. Their results showed that for every 100,000 women, birth control use increased risk by 13 women a year, from 55 to 68. Over 40 years, that would be 520 extra cases per 100,000 women. That’s 0.5% lifetime risk. Or, a 20% risk increase over baseline. In percent terms it doesn’t sound huge, and indeed, it isn’t compared to other risks. The study was not able to take into account confounding variable like weight, exercise, other disease, breast feeding, alcohol consumption, etc etc. What about IUD’s with tiny amounts of progestins in them? Nope. Still a problem.
What they also found was that lower doses in modern birth control pills still are risky and the use of “low dose estrogen” really doesn’t add much. And, the progestins (Manufactured artificial progesterone) may actually be the main culprit. If you look at the moleculeprogesterone, and compare it to the molecule medroxyprogesterone, you can quickly see that they aren’t the same thing. They have enough overlap in function to fulfill their duty of hormonal manipulation, but then confuse the body by not setting off the normal biological signaling that the proper molecule provides. The mid cycle surge of LH and FSH is suppressed by lowered free hormones, secondary to elevated Sex Hormone Binding Globulin. You don’t ovulate. Presto.
Are other methods of birth control any safer? You have to go through all the complex math of failure rate and risk of pregnancy, and consequences of pregnancy to come to your own decision. At the end of the day, birth control pills and the IUD are extremely effective at preventing pregnancy, but they do have some risk to them. Ok,, you are informed. (And we didn’t go into the risk reduction of ovarian cancer etc that birth control may help – whole other topic.)
Now, can you soften the risk. You bet. When you do get pregnant, consider breast feeding as your “anti-cancer”, “baby’s brain health”, strategy. For every 6 months of breast feeding, your future risk of breast cancer drops some 15-16 percent – with studies rangingfrom 20% to 60% lifetime risk reduction by getting in the habit and sticking with it.

And then there is iodine, 1 mg a day, Vitamin D to a level of 50, exercise, weight control, Vitamin K2, avoid xenoestrogens (BPA) and eat lots of organic vegetables, and you can keep dropping the risk further.

www.What will work for me. This is one of the most common questions I get asked. How safe are birth control pills. It’s a yin and yang. Life has risks and choices. Driving to my office has risks. Texting on the way is dangerous. What I do tell my clients is please, please take a 6 month sabbatical from birth control every 5 years. And if you don’t want any more children, male or female tubes can be clipped.


Pop Quiz

  1. Birth control pills cause breast cancer by how much?                                          Answer: 13 extra cases per 100,000 women per year – or .5% higher
  2. What is the risk of pregnancy?                                                Answer: in advanced nations with good prenatal health care, 12/100,000 maternal deaths from pregnancy is what WHO provides.   This low rate occurs where  we do not have a targeted strategy for all pregnant women, it’s higher that other parts of the world where risks are up to 200+/100,000 deaths per year from pregnancy
  3. What is the most effective method to lower my risk of breast cancer?                    Answer: breast feed for at least 6 months with every pregnancy. Try for a year.
  4. What other strategies can I do go lower my breast cancer risk?                               Answer: stay slender, exercise, avoid sugar, iodine 1 mg a day, Vitamin D, K2….
  5. Is the IUD any safer?                                                                                                          Answer: No.