Category Archives: 3. How We Should Eat

Fast Mimicking Diet 3: The Fasting Part

Fast Mimicking Diet 3 The Fast Mimicking

References: Longo: The Longevity Diet, [Science], Science DirectCellCell Metabolism,

I like to eat. I get hungry. What is it about fasting that makes me do better? Let’s review. Valter Longo found that there were two processes in yeast (very primitive organism) and mice (sophisticated mammalian organism) that respond in the same way. RAS and TOR. Those are the two pathways that appear to accelerate aging. Sugar turns on RAS-PKA and extra protein turns on TOR-6SK Growth Hormone Pathway. If you can down regulate the RAS pathway, you increase the rate of clearing out old, dead, malfunctioning tissues and organelles. That’s called autophagy. TOR is an internal monitor of nutrient density and controller of cell growth. Can’t grow if you don’t have enough food. Dial TOR down and cells stop dividing and go into hunker down mode. Alter those two pathways and presto, chango, you have gotten to the root cause of aging in humans. That discovery, that these two pathways are fundamental to all life on this planet, starting with yeast and moving all the way up to humans, is Longo’s key contribution to modern understanding of aging.
Fasting turns both those pathways in the right direction. It takes about 24 hours to use up the glucose in your liver, stored as glycogen. The human body then switches to burning fat from stores in fat cells. The brain and body utilize ketone bodies in a process termed ketolysis, in which acetoacetic acid and 3-β-hydroxybutyrate are converted into acetoacetyl-CoA and then acetyl-CoA. In yeast, glucose, acetic acid and ethanol, but not glycerol which is also generated during fasting from the breakdown of fats, accelerate aging. Not glycerol. Did you get that? There is one carbon source that doesn’t turn on the nutrient recognition pathway. Glycerol is the 3 carbon fragment that holds fats together in tri-“glycerides”.

Fasting for 3 or more days in humans causes a 30% decrease in circulating insulin and glucose, as well as a reduced level of insulin-like growth factor 1 (IGF-1), the major growth factor in mammals, which together with insulin is associated with accelerated aging and cancer. Fasting for five days results in a 60% decrease in IGF-1and a 5-fold or higher increase in one of the main IGF-1-inhibiting proteins: IGFBP1. This effect on IGF-1is mostly due to protein restriction, and particularly to the restriction of essential amino acids, but is also supported by calorie restriction since the decrease in insulin levels during fasting promotes reduction in IGF-1. In humans, chronic fasting does not lead to a decrease in IGF-1 unless combined with protein restriction.
Did you get all that? It’s the protein restriction that matters. Five days appears to be the time period in which maximum reduction of cancer growth factors and insulin occurs. You can trick the system with some glycerol which doesn’t register as a sensed nutrient. And we have some markers of metabolism to show your success. 5 days. Reduced protein, animal in particular. Cut the calories down to low enough to turn on and maintain ketogenesis. Sounds like about 800 a day will work. The goal isn’t to lose weight but to turn on anti-aging genes.

WWW. What will work for me. Well, I’ve finished one cycle for myself and lost 6 pounds while doing it and another two pounds over the subsequent three weeks. Not bad. I’m going to do two more cycles and then repeat my own lab tests. Glycerol makes an interesting little sport drink. It’s slightly sweet and with a bit of flavor added from a tea, it’s not so bad. I’ve bought some hibiscus tea.

Pop Quiz


  1. What nutrient can you consume that is slightly sweet and doesn’t trigger calorie sensing? Answer: Glycerol
  2. What amino acid turns on aging, and absence turns off aging? Answer: leucine in particular.
  3. Five day fasting results in a 60% decrease in what? Answer: IGF-1 or our Growth Hormone surrogate marker.
  4. Along with that, you get up to a 5 fold INCREASE in what IGF-1 inhibitor? Answer: IGFBP1.
  5. What lab tests might you want to know if you were getting success in your fasting methods? Answer: Glucose, insulin, IGF-1 and IGFBP-1


Fast Mimicking Diet 2: The Human Method Simplified

Fast Mimicking Diet 2 The Human Method

References: Longo: The Longevity Diet, ScienceGut,

Last week we heard about yeast being used to explore what genes are needed to make the right environment for longevity. Valter Longo’s hypotheses was that those same genes exist in mammals, humans included. If he could make the same changes in longevity by diet and its effect on genes in mice that he made in yeast, he would have a huge scientific win. He started looking at mice and their genetic code. Mice live about two years and start getting cancer around a year and a half. That makes a useful model.
What did he find? The exact same thing. Two key ideas. Extra sugar activate the PKA gene. That causes trouble. Mice with lower PKA activity, live longer. That simple. And extra protein activates the growth hormone receptor and TOR-6SK and increases the level of insulin and insulin like growth factor. Certain amino acids appear to be more potent at activating the TOR-6SK complex, like leucine. which then accelerates aging. That’s it. The foundation of aging down to two simple key processes. Too much sugar, and too much protein. That duo is the foundation of what Longo called his “basic juvenology research”, one of his Five Pillars of Proof.
The story is all about the nuance of glucose and protein.

Our body runs on glucose. It is our preferred food for our brain, if present. The story is all about how it is delivered and what happens to our bodies if we get too much, too fast. When you get low glycemic carbs from vegetables, your blood sugar rises very slowly and you hardly get an insulin response. (For example, it takes 19 cups of asparagus to make 50 grams of glucose). If you have a diet of broccoli, spinach and green beans, you hardly get any insulin spike at all. A substantial portion of those vegetables make it to your colon where the biome in your colon changes those coarse fiber rich foods to short chain fatty acids, just like in gorillas (See this column from 2 weeks ago). Just like with gorillas, a high fiber diet actually results in substantial increase in fatty acids, or fat. Adhering to a Mediterranean Diet appears to make this possible, all due to the activity of the biome in your gut.
A high protein diet changes your gut biome and increases many markers of cardiovascular disease,TMAO (trimethylamine oxide). So we have seen these changes from other lines of research as well.

We are even beginning to understand the incredible complexity of our gut biome. Our colon is there to take high fiber foods and digest them for us, releasing short chain fatty acids, turning low glycemic vegetables into short chain fatty acids. Bacteroidetes are more abundant in the stool samples of those eating a mostly plant based diet, while Firmicutes were more abundant in those who eat a more animal products diet. From those major families, the specific bacteria Prevotella and Lachnospira were more common in vegetarians and vegans while Streptococcus is more common among the omnivores with higher meat intake.

Can we take this to humans with specific guidelines? Well yes. This is what Longo has come up with. Protein should be about 0.31-0.36 grams per pound per day, of which about 40 grams for women weighing 130 and 60 grams for men weighing 200. Once you hit age 65, you likely need a little more protein, but not that much. Just a little.

Your diet should be rich in healthy fats like olive oil, fish and coconut oil, walnuts and almonds. These fats essentially do the same process of helping you get more calories from fat, like the gorilla. Trans fats and saturated fats are to be avoided. And there should be plenty of Healthy Carbs – the type that make it to your colon and turn into fat. They generally have a glycemic index under 20, or 45 max which would include beans (if you aren’t lectin sensitive). The carbs that get digested in your small bowel and make sugar spikes look like ground flours of any kind, sugar in particular, high fructose corn syrup in double particular, fruit juices or too much modern fruit (modern apples are nowhere near the original Himalayan apple – ditto for pears, bananas, on and on that we have altered in the last 100 years to be much richer in sugar). Most grains are just too rich in carbs to be too good for you, unless you have changed them to be resistant, usually by cooking and then cooling. Same with potatoes. The original potato from Peru was a fine food with a GI of 40. Now it’s a glycemic index of 80-95, unless you boil it and cool it making it resistant. (Is this enough to confuse you a little?)
Finally, cut your meals down to 2 and a snack. Try to fit all your food into 11-12 hours of eating and not for 3 hours before bedtime. Breakfast is NOT the meal to skip as there is plenty of evidence that that habit correlates with many illnesses.

Ok? Next week, we will discuss how to FAST and do it right so that you kick start your genes into being supercharged. It’s cool, and it works.
WWW. What will work for me. This is evidence based and I get it. I’m so fascinated that I drew my own lab tests and started doing it full bore, as much as can be done living in a modern 8-5 work world. It’s the fasting part that has my attention. I’ve completed my first 5 day session and intend to do it again. It wasn’t so hard. More next week.

Pop Quiz


  1. Animal protein appears to shorten longevity? T or F                           Answer: True
  2. We need animal protein to support our healthy brain? T or F          Answer: Again true. Conundrum? Yup. We get B12 only from animal sources. But nature doesn’t care much about you once you have made your babies and passed on your genes.
  3. A high carb diet is bad for you. T or F                                                    Answer: All in the details. High in low glycemic green vegetables, it’s very good for you and is actually a high fat diet.
  4. The über enemy of nutrition is?                                                           Answer: Sugar, fructose in particular when it gets above the 6% found in fruit.
  5. How much protein can I have a day?                                                   Answer: 0.31-0.16 grams per pound when under 65 A little more after. But not much.


Fast Mimicking Diet 1: Starting With Yeast

Fast Mimicking Diet 1: Starting with Yeast

References: Fabrizio Science 2001Science Translational MedJBCPNASGenetics,

You’ve heard of fasting and how it encourages the body to live longer. Well, sort of. The problem is, you like to eat. And eating is critical to keeping you alive. Let’s turn it around a little and come at it from a different way. Can we make the argument that we can identify the process by which changing patterns of food, including low calorie periods of time, turn on “good genes” and what are those “good genes”?
Turns out no one had looked at aging from that point of view prior to Valter Longo. He set out on his career with the premise that the way to explore healthy aging should be to identify and encourage the genetic processes by which we can build resiliency and healthy aging. He started with yeast because they live just a few days and all 6000 of their genes are known. It’s easy to make mutations and delete a gene and see what happens. Here is what he found.
In yeast, if you take away all nutrients from them except water, they live twice as long. Hmmm. If you add back nutrients, one at a time, the only one that accelerates aging… the ONLY one, is sugar. It activates two genes called RAS and PKA and inactivates enzymes and factors tha protect against oxidation. Boom, there he was. He found a key pathway in the gene signaling pathway that caused aging. And when he came out with it, as the basis of his PhD thesis, it was so new and so far ahead, no one would believe how a lowly graduate student could come up with such a significant finding, and he was ignored and avoided. He teamed up with folks looking at more complicated organisms, worms, and found much the same but to jump from yeast to humans was too big a paradigm shift for folks to believe, and thereby publish his data. It took 6 years for him to get published in Science, and another eight years to get a study on humans showing how down regulating the human growth hormone gene helped humans live longer Sci Trans Med would be published.
He discovered that dwarf yeast and mice lived 2-6 times longer, so he sought out populations of dwarf humans in Ecuador, the Laron Syndrome folks, who are tiny dwarfs that smoke, drink, eat fried food and don’t get any diseases of aging like diabetes and heart disease. Studying that population found that their defect in their growth hormone gene forced their body to go into constant regeneration mode. Studies of their brains showed that their brains were much younger in function than the rest of their bodies. That was the key. Regeneration mode. What on earth was going on? He suddenly found his ideas being accepted. Even the Pope wanted in, and he took some of his Laron buddies off to Rome to review his finding.

Starting with that research, Longo noted that aging is the risk factor that is common to all disease. The older you get, the higher your chances of getting…… name it, cancer, diabetes, heart disease, Alzheimer’s. Hence, start with that problem. Reduce the aging pathway and those diseases will take care of themselves. That’s why the Laron stayed “healthy”, despite all their bad habits. So, can we duplicate that by changing the way we eat? Yup.
What is the simplified version that we can understand? Easy. There are two pathways that appear to accelerate aging. The Sugar pathwy turns on RAS-PKA and extra protein turns on TOR-6SK Growth Hormone Pathway. If you can down regulate the RAS-PKA pathway, you get autophagy – you gobble up old dead stuff and get rid of it. TOR-6SK is a critical monitor of nutrient density and controller of cell growth. Dial TOR down and cells stop dividing and go into hunker down mode. Alter those two pathways and presto, change, you have gotten to the root cause of aging in humans. That discovery, that these two pathways are fundamental to all life on this planet, starting with yeast and moving all the way up to humans, is Longo’s key contribution to modern understanding of aging.

How can you alter those two? Next week.

www.What will work for me. I’m enthralled with the beauty of creation. From yeast up to humans, we can follow the same biological processes down at the cellular level, and then follow them up through all biology. The Laron People have a terrible mutation in that they end up being only 3-4 feet tall, and then live to 90 with no diseases. And all of this is connected to how we eat. Next week.

Pop Quiz


  1. If you feed yeast one food, they die much faster. What is it?                    Answer: sugar
  2. The one process that makes years live twice as long is?                            Answer: feed them nothing but water.
  3. Who are those people in Ecuador that live to be 90 with no diseases, despite eating fried food and smoking like chimneys?                                                                  Answer: The Laron who have a defect in growth home production – and end up 4 feet tall.
  4. What two pathways do we share with yeast, and mice, and worms, and snakes, and monkeys and everything in between?                                                            Answer: TOR and RAS
  5. What do TOR and RAS do (BONUS POINTS)?                                                 Answer: RAS measures nutrients and turns of housecleaning when there aren’t any. TOR measures nutrient density and turns on “hunker-down” mode when there is little.

Lectin Lesson 5: Resistant Starch is a High Fat Diet – Ask the Gorillas!

References: Steven Gundry’s Plant Paradox, Journal NutritionJ. Internal MedNature,

Once upon a time our diet was very similar to gorillas. Say some 10 million years ago, and prior. We ate leaves, in Africa. Only 8 million years ago did we diverge from chimpanzees and only 2 million years ago did our brains start getting bigger in response to eating meat. We had learned to run long distance, which made us the most successful hunter in Africa. But our guts were still used to eating leaves, and designed to do so.

What happens on eating leaves? Leaves are very dense, high fiber foods. Gorillas eat about 16 pounds a day, in today’s gorilla. The gorilla can’t digest those leaves, but their gut biome can. The bacteria in their gut break down the leaves and convert the cell walls of those plants into tiny, short chain fatty acids. Net effect, the gorilla’s diet becomes 70% fat, ideal food for brain and nerve cells. What looks like a high fiber, low fat diet turns into a high fat diet when the gut biome is properly nourished and contributes like it was designed to.
Now, let’s make a pivot and see if we can find anyone on this planet who eats a high fiber, high fat diet. We end up with a unique society in remote New Guinea called the Kitavans. A Swedish Researcher, Lindeberg, did a studyon the Kitavans who eat virtually no western food, 70% carb, and 20% fat and have absolutely no obesity, no heart disease, no diabetes and live into their 90s, while smoking. Imagine that!
How do they do that? They eat a ton of resistant starches in the form of taro, coconut, fruit and fish. We find much the same from Tokolau, another remote Polynesian Island with no western food: just mostly coconuts and fish.

The key is that idea of resistant starches. These are “carbs” that don’t act like most carbs. They don’t get digested in the small bowel. In the process of cooking their molecular shape is changed.  They are passed on through to the lower gut where they are ideal foods for your gut bacteria. Your colonic biome goes nuts with happiness and digests them down into short chain fatty acids, turning what looks like carbs into fat. This is the same hat trickthe gorilla does in their gut. Not only that, with all that food, the bacteria make a thick coat of mucus in your gut and you make a much more effective barrier to absorbing those dangerous lectins and LPSs fats that turn on inflammation – so you make a better natural barrier. Resistant starches reverse the damage of red meat. Now, many resistant starch foods are high lectin foods: boiled and cooled potatoes, rice – cooked and cooled, beans and oats. Gundry acknowledges this and advises you eat green bananas. Not ripe ones where the carbs are sweet and absorbed, but green where they are still resistant.

Turn on the lens of resistant starches and suddenly long lived societies around the world come into focus. They all have the same features in common. Their diets show high fiber diets of resistant starches, which their colonic biome turns into short chain fatty acids. Their brains get high fat intake. On Okinawa, the fiber is in the form of yams. Sardinians and Cretans eat high fat in the form of olive oil. Seventh Day Adventists are vegetarian, but eat about 60% fat from olives and peanuts. The Mediterranean diet goes straight for the olive oil, making an approximate high fat diet. We know your brain does better eating fat. It has to be the right fat. And having your colon make it for you appears to be the right concept. Thank you, gorillas.

WWW.What will work for me. Gundry is turning our dietary concepts on its head. But data is data. The Kitavans make for a unique example. Ditto from Tokolau Island(70% of diet from coconut). There is rice being developed on Okinawa that is particularly resistant. I’m curious if I can find it. I’m not taking up smoking. But will I eat a bit of rice now? Yes, if it has been cooked and then cooled down. Raw banana, well, I’ll try one.


Pop Quiz

  1. Gorillas eat a high fat diet? T or F                                                    Answer: False, they eat a resistant starch diet that is turned into high fat in their gut
  2. We can find examples of high fat diets all around the world. Name some.
    Answer: Sardinians, Tokolau, Crete, Loma Linda Adventists.
  3. Resistant Starches do what?                                                            Answer: Get through your small bowel undigested and give ideal food to your colonic biome where they make small fatty acids, ideal brain food.
  4. Folks eating high carb diets are in trouble for diabetes? T or F        Answer: Stupid question because there is no nuance. Eat a pizza and the high glycemic wheat crust and fatty cheese and meat will instantly turn on weight gain. Eat a high carb diet of taro root and raw bananas, and you get no weight gain.
  5. If you smoke, you can get away with it? T or F                                     Answer: True, if you move to Kitava and eat raw bananas and taro root. Otherwise you just die sooner.




Lectin Lesson #3: How Lectins Make you Fat

Reference: Gundry’s The Plant ParadoxAm Jr Physiology,

Did you know that humans lost height and brain case size in the 1000 year transition from hunter gatherer to wheat grower. Gundry quotes this in his book as what has been discovered at archeological sites from those time periods. Civilization had its costs? All so that we could have kings and cities and armies and compete with your neighbors more effectively. Hmm. And we started domesticating pigs and cows, sheep and goats….so we didn’t have to go hunting. Here is Grundry’s conjecture. Wheat and lentils are amazing grains. When you eat them, you gain weight faster and more efficiently to that you can make it through winter more efficiently. Civilization liked wheat, because by putting calories on into storage, those who ate it lasted longer.
Now, extend that to today and see if it’s any different. What do we feed cows before we slaughter them for market – corn and beans? Wild pigs are lean animals. Domesticated pigs have lots of fat (we call if bacon) when fed corn and beans. Those foods make animals fat too. So Gundry’s hypothesis is that humans didn’t choose wheat and lentils to grow because they could be stored, but because you put weight on the most effectively with them. That’s his Plant Paradox. The very plants (wheat and beans) that allowed our ancestors to develop civilization and store calories for the winter were the same plants that hastened our demise from metabolic diseases. Now, that was hidden for the last 9,000 years because we died of measles and tuberculosis and cholera by age 30 anyways, and didn’t see the degenerative effect of inflammation caused by these grains. Grains became the means to civilization not because they could be stored, but because they were the most efficient means to put on weight and make it through winter. They promote more calories into fat deposit than any other food. And then, isn’t it curious that milk from black cows, so called A-1 milk, has lectin qualities to it too in its BMC-7 fragment, and promotes weight gain.
Ok, I get the historical conjecture but is there a coherent biological explanation for how this works? Yes, indeed. It goes as follows. Two key processes are going on.

First, the disruptive effect of the lectin in wheat called WGA. Wheat germ agglutinin. It looks a lot like insulin. Acts like insulin. That’s what lectins are, proteins that mimic mammalian proteins and cause damage by disruption. WGA mimics insulin, badly. Insulin attaches to a cell for a tiny amount of time, then lets go. WGA doesn’t let go. On a fat cell, the message is to take up glucose, forever and ever. That fat cell gets fatter. On a muscle cell, however, the message is to block insulin effect so muscle are starved. Again, WGA doesn’t let go so the real hormone that should be on the receptor can’t dock on its receptor and tell the muscle cell to take up glucose and run with it. Same effect on nerve cells: WGA clamps on and doesn’t let go. Nerve cells are starving. But they send out the message to the organism: “Eat more.”
Even more disturbing isrecent evidence has emerged that lectins can climb up the vagus nerve from the gut to the brain, damaging the substantia nigra, the seat of Parkinson’s disease. Indeed, cut the vagus nerve and the risk of PD drops 40%.
The final argument to support Gundry’s hypothesis might be called the Common Soil Hypothesis – that the mechanisms of metabolism and inflammation are curiously linked. You got fat because your body is at war with itself. And it goes as follows. The lectins set off your “Tiny Little Radars”, your Toll Like Proteins, that reside in your blood vessels and fat cells. They set off cytokines (your body’s fire alarms) calling for white cells to respond to clean up the invading bacteria. Except there are no bacteria. It’s just lectins. But the white cells show up. And your body shifts into war mode. Energy goes to the troops, the white cells. The stay-at-home folks, (Gundry calls them civilians but you think of them as muscle and brain cells) go on war rations and get less. Hence, you become insulin and leptin resistant not because you are overweight, but because your body is inflamed from all the fake lectin signals setting off fire alarms about invading bacteria. Your body is at war, thinking you have been invaded by bacteria, and you are all pumped up and ready to defend. Except that there is nothing to defect. The home folks starve. Fat cells get bigger.

Get it? Stop the war, send the troops home. Weight loss follows automatically. Stop eating lectins. That includes A-1 milk and cheese, nightshade plants, wheat and beans and most of all, genetically modified foods with their genetically inserted extra lectins.

www.What will work for me. This is a paradigm shift type of thinking, but it makes perfect sense. I get it. I just have to figure out how to implement it. And wheat is lurking behind every food in America. And every meat product was raised on lectin foods: corn and soybeans so the lectins in those foods are still there for me to absorb. I have to live with this a while. But I can shift a little. Less beans, less wheat. One step at a time.

Pop Quiz

  1. You are leptin resistant and fat because you eat like a pig? T or F                      Answer: That’s backwards, unless you take eating like a pig to mean you are eating corn and beans, lectin foods. The proper answer is that leptin resistance and fatness comes from the natural shifts your body makes to counter the fake messages caused by eating lectin containing foods. You eat secondarily because your brain cells and muscles are starving, ironically.
  2. Lectins set off inflammation because they activate TLRs? What are TLRs?
    Answer: Toll Like Receptors or “Tiny Little Radars” in Gundry’s clever nomenclature – your natural bar code readers watching what’s in your blood to sort our friend from foe.
  3. You can make great bacon with wild boar? T or F                                                  Answer: Patently false. To make bacon on pigs, you have to feed them corn and beans.
  4. To make bacon on you, the best foods to do that with are?                             Answer: Same as with pigs. Corn, wheat and beans
  5. Ipso facto, to lose weight you need to ?                                                                Answer: create the environment whereby you “stop the war”, turn off inflammation, rid yourself of lectins, eat what nature intended you to eat.



Lectin Lesson 2: How Lectins Cause Damage with Inflammation

References: American Heart Sci Meetings,Jr, ImmunologyResearchgateWikipediaAthersclerosis,

Just what is going on with lectins? What’s the big deal? Do they really cause trouble?

To understand those questions, you have to understand the complement system in your body. This is not about saying a nice thing to you about your hair, or your necklace, this is about your basic lizard brain immune system, your innate immune system. Your innate immune system is the first to respond to threats with non-specific responses. If you think of a series of dominoes, each of which knocks over two more, the innate immune system is the means by which your body kicks back immediately against external threats and makes immediate reactions that happens quickly in response to “invasion”. A cascade of chemicals create tags to place on the invader to tell a white cell to eat that particular invader, (Opsonization is the fancy term) or punches a hole in the wall of the invader with donut shaped proteins so the invader leaks its guts out. You can imagine, this has to be carefully controlled as if it balloons out of control, you get the shaft and your own cells get damaged. The adaptive system, layer two of your immune response, takes longer to gear up and make specific antibodies shaped precisely to attack the invader, or specific white cells armed with bar code readers to find and destroy the invader. Doing all that takes time. In the short term, the complement system is it.
There are several pathways into the complement system. The classical pathway, the alternative pathway and the LECTIN PATHWAY. Did you get that? The lectin pathway is one of the ways you set off your innate immune system. To understand this pathway you have to be able to read the following sentences without pausing: This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). If you drill down into that, it simplifies to the sugar mannose that is part of many plant lectins, and your complement system watching for that sugar signature to fire off a response. Ficolins are protein lectins that come in patterns of five at a time, and also set of the lectin pathway.
Here is the rub. There is now evidence that a low lectin diet will decrease endothelial dysfunction (code word for the first step in coronary artery disease).

What’s the final implied conclusion? This is a new way to look at heart disease. Lectins play a roll is setting off inflammation. That’s a given. Lectins in the human diet have increased dramatically in the last 200 years as our foods from all over the world have become part of a new diet that never had those foods before. And in the 21st century, we have added all sorts of chemicals to our environment that allow our gut to “leak”: NSAIDs like ibuprofen and naproxen, steroids, antibiotics, PPIs. And we have genetically modified many of our foods to create grains resistant to insects by intentionally inserting more lectins into the genome of plants that we then eat. We have tilted the playing field. The slope is in the wrong direction to maintain health.
WWW. What will work for me. I am eager to learn this stuff. I was at a small plate restaurant this weekend and intentionally chose a low lectin dinner: grilled Brussel’s sprouts and calamari. I slept better last night. Hmmm. Don’t know if that’s linked. One meal does not a heart attack prevent, but Gundry has shown that a low lectin diet will reduce damaged blood vessels “endothelial dysfunction” in just a few months. I’ve been off ibuprofen now for two weeks. Never again.

Pop Quiz


  1. The Complement System is the method of English Manners and Polite Behavior. T or F Answer: well, yes, true, but not here. In your immune system, it’s your kick boxer – the first line of defense against invasion. Not polite
  2. Lectins set off the complement system. T or F                               Answer: True. There are 3 pathways to set it off and one of them specifically is started with lectins.
  3. Many lectins have a simple sugar on them that is an ID of trouble. What is it?          Answer:   Mannose
  4. You can reduce endothelial dysfunction with a low lectin diet? (What’s that?  It’s part of what we simplify to call high blood pressure, but is a bigger picture of damaged blood vessel lining.)                                        Answer:  Today’s takeaway
  5. We have had an increase in lectins in our diet in the last 100 years?                            Answer: Not only an increase by new foods, but intentionally added to many foods by genetic engineering, feeding lectins to our animals, and then the coup de grace of adding leaky gut from modern chemicals.


Lectin Lesson 1: What Are Lectins?

References: Int Jr of Plant ChemJr Cereal SciNutrients,

Ever had someone tell you that they are allergic to wheat? You scoff and say they don’t have celiac disease. And they don’t. They are sensitive to LECTINS. And lots of people are. If you feel your tummy upset when you eat bread or wheat, read on. This is for you. Actually, this is for all of us.
What are lectins? Plants make them to deter animals and insects from eating the plant. They are poisons. They are plants main way to protecting themselves. And plants have been very clever in figuring out how to do that over millennia. They have devised may lectins that look very close to the normal proteins inside of animals, but not quite the same. You see, if you make a close copy that messes up the animal by making fake signals, you make it feel sick when it eats you. So it stops eating you.
What did we do with wheat? In the 1950s, Borlag crossed old fashioned wheat with two grasses to make wheat go from the 14 chromosomes of old fashioned natural wheat to the 42 chromosomes of modern wheat. All the lectins in grasses got carried along into the new wheat. Now mind you, lectins are at very tiny levels. They aren’t the main show like carbs, or protein, or fat. They are like hormones, active at extremely low doses. This is how they have gotten by below the redar up till now. This is why you haven’t heard about them.

But lectins work exactly at that level. They act at very tiny doses like trace hormones. In your body you have millions of TLRs, Toll Receptor Proteins that are basically bar code readers. They are lining your blood vessels looking for invading bacteria and viruses and poisons. When their bar code gets matched with an invading protein, they stimulate the making of chemical signals to call in help. Those signals are called cytokines and your body makes a whole mist of the cytokines. There are dozens, if not hundreds of cytokines that all rise in a chorus of response to make an integrated immune reaction to the invader.

That immune response is meant to make an animal avoid that plant. The animal and plant, living in the same ecosystem get used to each other. They learn to tolerate, and accommodate each other. The animal’s gut bacteria develop a tolerance and acceptance of the plants lectin poisons, and start making a healthy immune reaction that is good, when done in tiny doses.

That all happens when animals live in the same ecosystem and eat the same food for millions of years. Humans did that up till about a million years ago. Then we learned to cook. Cooking inactivates a lot of lectins, so humans could add many more foods to their diet. All was well and good, as long as we humans were living in Africa and the Mediterranean, where we had reliable, accommodated foods. But then the thunderbolt happened. We learned to grow wheat and lentils in the Levant. 10,000 years ago, we learned agriculture. This allowed us to make cities and armies and increase our population. We didn’t have to go hunting game and could have farms and armies and kings. But we were eating a new food our guts weren’t really used to. The lectins really weren’t all that good for us. Over the next 1000 years, we lost a foot in height, a decade in longevity, 15% off the size of our brain but eating lectin rich foods instead of wild game. But the bargain with the devil was already done, civilization had begun. What would come next?
Read next week.
WWW.What will work for me. We all need to learn about lectins and their subtle but incredibly perverse effect. This applies to me and you. The scope of lectins is really the story of all our modern diseases. This is the underpinnings of inflammation, the engine that drives our common modern illnesses. Read on. We need to know this.


Pop Quiz

  1. What are lectins?                        Answer: trace substances, usually proteins made by plants that function to deter insects and animals from eating the plant.
  2. Plants and the animals that eat them get used to each other over million of years. T or F Answer: True. So humans come out of Africa and have gut bacteria that are familiar with African plants.
  3. How do lectins do their function?                                   Answer: they have often evolved to look quite similar to proteins inside the animal: close but not quite so they make dysfunctional actions that make the animal sick.
  4. Lectins are detected in animals by their “what” system?                        Answer: TRP or Toll Receptor Proteins lining all blood vessels.
  5. When humans started eating wheat and lentils in the Fertile Crescent 10,000 years ago, what happened.                                                              Answer: Civilization got started in cities and settlements, but humans also got shorter with smaller brains.   Wheat and lentils both contained new lentils previously unknown to humans. 10,000 years is not enough time to evolve new defenses to new lectins.


Juicing is Dangerous for You

Juicing is Dangerous.

References: Advances in NutritionAppetiteEating on the Wild Side,

I get asked all the time about juicing or “smoothies”. Most of the smoothies are described as rich combinations of green vegetables, or yogurt, or fruit. Then, I had someone describe to me how their blood sugar went up almost to 1,000 with a seemingly innocuous concoction. What’s going on that can make that happen?

This column has reviewed the science of changing an apple to apple sauce, then juice before. Barbara Rolls and her team at Penn State observed 58 random volunteer adults for a meal once a week over 5 weeks. Each volunteer was provided a precise “preload” of calories weighing exactly 226 grams with 125 calories in it; aka, one really nice apple. After 15 minutes, they eat whatever they wanted for their meal.

This is what they found. Eating a whole, solid apple resulted in a 15% reduction of calorie intake. That is a 62-calorie reduction for the entire meal. That would be interesting enough by itself. You can lose weight by having an apple 15 minutes before a meal! (62 calories a day is 1800 calories a month or 6 pounds a year.)

But wait, it gets better. Here is the heart of the juicing question. When they changed the apple into applesauce with the same weight, calories, rate of ingestion, timing, resulted in eating 91 calories less overall. Then change the calories into juice. It became 150 calories less.. Applesauce reduced total meal calorie consumption a tiny bit, compared to juice which had virtually no reduction in calories.

The final sword in the experiment was to add fiber added back into the apple juice. Now it becomes a drinkable product, aka juicing. You erase the positive effect of eating a whole apple before a meal. The drinkers did compensate for their calories in the meal, but they did not reduce their total overall calories like eating a whole apple did. It’s interesting that juice, with or without fiber had the same effect. Being liquid just doesn’t register in your brain, no matter the fiber content. Did you get that, juicing erases the message to your brain about content of food.

Our brains and physiology are quite complex. Part of a meal is the actual process of “eating” it. Chewing our food makes a difference in how much food we eat. Stretching it out over time makes a difference. The waiting of 15 minutes before the meal may have been part of the impact. We call that part the cephalic phase during which your body starts to get ready to digest and process food. Managing your cephalic phase sounds like heavy science. Or maybe it’s just plain heavy weight gain.

Here’s my take on it. Eating the whole fruit delivers fiber with the sugar and slows the process of absorbing the sugar dramatically. Mechanically grinding up an apple, or any vegetable, is far more efficient than chewing in terms of mechanically disrupting the cell wall and releasing the sugars inside. When you drink it, you get a burst of glucose delivery to your gut. This results in a burst of insulin release. This results in a burst of LDL production to ship fat to your fat cells instead of energy to your brain and muscles. You thought you ate 800 calories for your meal but your body is saving some of it to fat, because of the insulin burst. Hence, you eat more.

Moral of the story: juicing changing the way you get nutrients: the speed, the mechanics of chewing, the rate of glucose rise all are disrupted. You gain weight.
Now, if you are averse to vegetables and you can’t get them any other way……and aren’t overweight. I’ll relent. If your smoothie is just kale and asparagus and yogurt, I’ll concede. But throw in an apple or a banana, and my skepticism goes up. The heart of the matter is that today’s apple is really much more endowed with sugar than nature’s original apple. Malus Sikimensis, the Himalayan apple is the worlds original, and has a very bitter/sour flavor, sort of like a crab apple. We have changed it into a Golden Delicious, with 1% of it’s original phytonutrients and 10 times its sugar. Hmmm.

www.What will work for me. Eat the whole food. Chew. Sit. Wait. Talk. Enjoy. Visit. The calories you drink are the calories you store. Repeat after me. The calories you drink are the calories you store. Plain and simple.

Pop Quiz

  1. Juicing is really healthy for me?                                                                               Answer: Please reread this column
  2. I hate vegetables. If I juice them, I can get some down. Is that ok?                  Answer: if you keep the high glycemic fruits out of it, you are getting some fiber this way, but be careful if you are trying to lose weight.
  3. The calories I drink are…………                                                                                 Answer:                        The calories I store. (smoothies)
  4. The calories I drink are …………….                                                                            Answer: The calories I store (beer).
  5. The hormonal effect of food is more important for weight control than the quality of the food. T or F                                                                                                                  Answer: True. That’s the secret behind this message. Smoothies make glucose be delivered too fast, turning on insulin. Insulin is your storage hormone. The exact same food, delivered slowly and with fiber built in makes for a different metabolic product.



The Trouble with Iron Part III Diabetes

The Trouble with Iron Part III Diabetes

References: Cell MetabolismJ of Diabetes Research,

You were trained to think of iron as absolutely necessary to help fatigue. “Build up your blood!” and other such phrases are deep in our subconscious. We see blood and know it is the red of iron. Iron is critical for life, because it’s the key to carrying oxygen to the tissue so that we can make energy. No doubt, iron is important. But carrying oxygen is no mean feat, as it is such a reactive chemical, it needs the strong chemical bond of iron in heme to transport it. What happens when you get too much iron?

Two conditions of too much iron are thalassemia and hemochromatosis. Guess what happens to those folks? Hemochromatosis is also known as bronze diabetes. They fill up the islet cells of their pancreas with iron, and their insulin producing capacity fails. This can be reversed with removal of the iron.

And what happens to normal folks? Well, here again we find that the tendency to being diabetic goes along with the tendency to be iron overloaded. And the devil is in the details. It’s not just the total load of iron that causes damage. It’s not just the accumulation of iron in the islets of your pancreas. It’s the whole ecosystem effect of iron. Iron plays a role in every tissue that mediates energy metabolism, particularly the fat cell. There is a whole host of signaling that occurs when iron is present with intracellular and extracellular messaging. The nuance of it is still not anywhere close to being understood, but you can get a sense for its complexity by the review in Cell Metabolism.
And what have we done, with all of our good intentions, in America. We have devised guidelines for iron supplementation that serve young, pregnant women, well. We add iron to all our grains. It is the fortification you see on the label of every kind of flour product. When you eat most breakfast cereals, particularly the ones that claim to have you supplemented with great vitamins and minerals, you will find 18 mg of iron added to each serving. But it will also be in the flour of your bagel, your hotdog bun, your Danish, your french toast. And it interferes with your metabolism of carbs, immediately. On the spot.

This raises a fascinating conjecture. Is it the iron added to carbs that makes them so problematic for weight gain, insulin resistance and diabetes? Hmmm. There is enough evidence around iron to make it a perfectly reasonable hypothesis. That also explains a few conundrums that the pure carbohydrate hypothesis doesn’t solve. For example, why is red meat so insulogenic? You eat a large bloody red steak, dripping with heme, and you get a huge spike in insulin. And it may not be just the red meat per se, because we see a stronger effect with processed meats. The evidence seems to lean towards more complicated and nuanced reasons, like the amount of AGE’s and ALEs. (If you knew what those were before you read this: you are a star. AGE’s are Advanced Glycation End Products – made by roasting meat with sugared sauces and ALEs are Advanced Lipo-oxidation Products, that occur with food preparation of meats with protein and high fat content.) However it occurs, iron is in the middle of it.
Here are some tests this hypothesis. First, one must look for high ferritin in folks who have high cholesterol, moderate blood glucose and elevated insulin: all the people we thought were overindulging in carbs. So far, I’m three for three. The last one had a ferritin over 600. Another test…..why can’t women lost weight after menopause? Answer: They stop losing iron with menses after menopause, accumulate iron and have their insulin go up. That makes them gain weight. Hmmm. Ever seen that happen? They go carb free and eat more meat, and don’t lose weight. Hmmm. I’m about 400 for 400 on that one.

WWW: What Will Work for Me. I’ve paid a lot of attention to this topic in my own life. Right now I’m reading labels and finding secret iron everywhere. At the picnic last night, I avoided the hamburger offering and had two olive oil salads instead. I had just read that the iron in spinach is tightly bound by oxalates. And what about Vitamin C? It increases iron absorption 400%. Complex, isn’t it?

Pop Quiz

  1. Too much iron in you can cause you to become insulin resistant, thereby leading to diabetes risk and obesity? T or F                                                                              Answer: Bingo. True
  2. The mechanism for this cause is well known. T or F                            Answer: Well, it’s well known now but the mechanism is still murky. Too complex. The phenomenon has been observed. And ferritin is deposited into insulin cells in the pancreas, but the cellular mechanism is much more nuanced, probably because iron is so tightly regulated and bound.
  3. You should know your iron level and it should be?                              Answer:  Ferritin of 40 or so.
  4. If your ferritin is too high, you can reduce it by?                                   Answer: giving blood to the Red Cross. Come on in and we will phlebotomize for you if the Blood Donor Center won’t or can’t do it.  (Leaches.  Blood letting.  Hand to hand combat.)
  5. This iron topic is a whole new way of interpreting the problem with carbohydrates, because………..?                                                                                           Answer: we added iron to virtually all carbs in Western societies. It may be the iron, and not the carbs.  This is conjecture for now, but it sure fits.

Bergamot – a Food Answer for Statins

Bergemot – a Food Answer for Statins

References:  International Jr of CardiologyScientific ResearchWikipedia,  BioMed ResearchReggio do Calabria,

Ever heard of Bergamot? Not me! You should. It’s an ancient hybrid of mandarin oranges, pumalo and lemons but is now grown as its own fruit mostly in the Reggio de Calabria region of Italy and a few other isolated Mediterranean locations. It’s not been used much outside of Italy, except perhaps as the flavor of Earl Gray Tea. There is an herb called bergamot but that is in the mint family and completely unrelated. This article is about the orange-like fruit with its unique compounds melitidin and brutieridin which have statin like qualities.

Yes, statin like qualities. We know red yeast rice has statin like effects, but bergamot has not been well known. In one study, bergamot was added to rosuvastatin to see if there was similar or additional effects. There were! The bergamot lowered the LDL fraction all by itself, but additionally lowered markers of oxidative stress. This is the real driver of blood vessel damage. You can measure markers like malondialdehyde, oxyLDL receptor LOX-1 and phosphoPKB, (in research labs, not in practice) which are all biomarkers of oxidative vascular damage, in peripheral polymorphonuclear cells.

Another study from Italy looked at both cholesterol and non-alcoholic fatty liver disease markers against the use of bergamot. These are both independent markers of risk for subsequent heart attacks and strokes. Bergamot had pretty impressive effects. In the group receiving the bergamot extract of 650 mg twice a day, a statistically significant reduction of fasting plasma glucose ( 118 to 98) , serum LDL cholesterol (162 to 101) and triglycerides (232 – 160) alongside with an increase of HDL cholesterol (38 to 49) was found. Liver functions showing fatty liver dropped too. ALT went from 54 to 36 and AST from 54 to 41. Wow!
Now, all of those same changes can be made by eating less high glycemic foods. Cut out all grains and sugar and eat lots of greens, healthy oils and vegetables and you can get much of the same. Or get ketogenic with 20 grams of carbs a day and you will see all the same effects.

WWW. What Will work for me. My eternal struggle to find a sensible role for statins keeps coming up short. And when I find a natural food that nature has made for us, I get great satisfaction. Bergamot has just been released as a supplement you can purchase. I’m adding it to my protocol for heart disease reversal. I am looking for folks who want to try it for three months and see what happens to an otherwise stable situation. I suspect it will have overlap for any condition that benefits from lower blood sugar: Alzheimer’s and cancer to name two.

Pop Quiz

  1. Bergamot is an herb that helps heart disease. T or F
    False. Get the details right. It’s an orange family fruit. The herb smells nice but is unrelated.
  2. Bergamot appears to lower heart disease risk factors more than any other single food. T or F
    That is probably true
  3. We have great research showing that it reduces heart attacks. T or F
    False. And we never will. There is no money behind this. It costs millions to follow people for years. But that doesn’t mean it doesn’t. It just hasn’t been clinically proven. These two papers simply show that it has the same chemical effect as statins and lowers the key risk factors. You have to make a leap of faith to assume it would help. Probably reasonable well founded leap, but still not proven.
  4. If you have fatty liver, you should take bergamot. T or FAbsolutely true. Fatty liver is a dangerous marker for both vascular disease, but also for sudden, unexpected liver failure. That’s worse! Getting rid of fatty liver is a big deal.
  5. I need a prescription to get Bergamot. T or FFalse. I have it in my office. MD Custom Pharmacy has it. Amazon has it. Don’t get the essential oil. You want the orange extract. The oil is a mint family extract.