Category Archives: 13. Killing Cancer with Nutrition

Fast Mimicking Diet 3: The Fasting Part

Fast Mimicking Diet 3 The Fast Mimicking

References: Longo: The Longevity Diet, [Science], Science DirectCellCell Metabolism,

I like to eat. I get hungry. What is it about fasting that makes me do better? Let’s review. Valter Longo found that there were two processes in yeast (very primitive organism) and mice (sophisticated mammalian organism) that respond in the same way. RAS and TOR. Those are the two pathways that appear to accelerate aging. Sugar turns on RAS-PKA and extra protein turns on TOR-6SK Growth Hormone Pathway. If you can down regulate the RAS pathway, you increase the rate of clearing out old, dead, malfunctioning tissues and organelles. That’s called autophagy. TOR is an internal monitor of nutrient density and controller of cell growth. Can’t grow if you don’t have enough food. Dial TOR down and cells stop dividing and go into hunker down mode. Alter those two pathways and presto, chango, you have gotten to the root cause of aging in humans. That discovery, that these two pathways are fundamental to all life on this planet, starting with yeast and moving all the way up to humans, is Longo’s key contribution to modern understanding of aging.
Fasting turns both those pathways in the right direction. It takes about 24 hours to use up the glucose in your liver, stored as glycogen. The human body then switches to burning fat from stores in fat cells. The brain and body utilize ketone bodies in a process termed ketolysis, in which acetoacetic acid and 3-β-hydroxybutyrate are converted into acetoacetyl-CoA and then acetyl-CoA. In yeast, glucose, acetic acid and ethanol, but not glycerol which is also generated during fasting from the breakdown of fats, accelerate aging. Not glycerol. Did you get that? There is one carbon source that doesn’t turn on the nutrient recognition pathway. Glycerol is the 3 carbon fragment that holds fats together in tri-“glycerides”.

Fasting for 3 or more days in humans causes a 30% decrease in circulating insulin and glucose, as well as a reduced level of insulin-like growth factor 1 (IGF-1), the major growth factor in mammals, which together with insulin is associated with accelerated aging and cancer. Fasting for five days results in a 60% decrease in IGF-1and a 5-fold or higher increase in one of the main IGF-1-inhibiting proteins: IGFBP1. This effect on IGF-1is mostly due to protein restriction, and particularly to the restriction of essential amino acids, but is also supported by calorie restriction since the decrease in insulin levels during fasting promotes reduction in IGF-1. In humans, chronic fasting does not lead to a decrease in IGF-1 unless combined with protein restriction.
Did you get all that? It’s the protein restriction that matters. Five days appears to be the time period in which maximum reduction of cancer growth factors and insulin occurs. You can trick the system with some glycerol which doesn’t register as a sensed nutrient. And we have some markers of metabolism to show your success. 5 days. Reduced protein, animal in particular. Cut the calories down to low enough to turn on and maintain ketogenesis. Sounds like about 800 a day will work. The goal isn’t to lose weight but to turn on anti-aging genes.

WWW. What will work for me. Well, I’ve finished one cycle for myself and lost 6 pounds while doing it and another two pounds over the subsequent three weeks. Not bad. I’m going to do two more cycles and then repeat my own lab tests. Glycerol makes an interesting little sport drink. It’s slightly sweet and with a bit of flavor added from a tea, it’s not so bad. I’ve bought some hibiscus tea.

Pop Quiz


  1. What nutrient can you consume that is slightly sweet and doesn’t trigger calorie sensing? Answer: Glycerol
  2. What amino acid turns on aging, and absence turns off aging? Answer: leucine in particular.
  3. Five day fasting results in a 60% decrease in what? Answer: IGF-1 or our Growth Hormone surrogate marker.
  4. Along with that, you get up to a 5 fold INCREASE in what IGF-1 inhibitor? Answer: IGFBP1.
  5. What lab tests might you want to know if you were getting success in your fasting methods? Answer: Glucose, insulin, IGF-1 and IGFBP-1


Fast Mimicking Diet 2: The Human Method Simplified

Fast Mimicking Diet 2 The Human Method

References: Longo: The Longevity Diet, ScienceGut,

Last week we heard about yeast being used to explore what genes are needed to make the right environment for longevity. Valter Longo’s hypotheses was that those same genes exist in mammals, humans included. If he could make the same changes in longevity by diet and its effect on genes in mice that he made in yeast, he would have a huge scientific win. He started looking at mice and their genetic code. Mice live about two years and start getting cancer around a year and a half. That makes a useful model.
What did he find? The exact same thing. Two key ideas. Extra sugar activate the PKA gene. That causes trouble. Mice with lower PKA activity, live longer. That simple. And extra protein activates the growth hormone receptor and TOR-6SK and increases the level of insulin and insulin like growth factor. Certain amino acids appear to be more potent at activating the TOR-6SK complex, like leucine. which then accelerates aging. That’s it. The foundation of aging down to two simple key processes. Too much sugar, and too much protein. That duo is the foundation of what Longo called his “basic juvenology research”, one of his Five Pillars of Proof.
The story is all about the nuance of glucose and protein.

Our body runs on glucose. It is our preferred food for our brain, if present. The story is all about how it is delivered and what happens to our bodies if we get too much, too fast. When you get low glycemic carbs from vegetables, your blood sugar rises very slowly and you hardly get an insulin response. (For example, it takes 19 cups of asparagus to make 50 grams of glucose). If you have a diet of broccoli, spinach and green beans, you hardly get any insulin spike at all. A substantial portion of those vegetables make it to your colon where the biome in your colon changes those coarse fiber rich foods to short chain fatty acids, just like in gorillas (See this column from 2 weeks ago). Just like with gorillas, a high fiber diet actually results in substantial increase in fatty acids, or fat. Adhering to a Mediterranean Diet appears to make this possible, all due to the activity of the biome in your gut.
A high protein diet changes your gut biome and increases many markers of cardiovascular disease,TMAO (trimethylamine oxide). So we have seen these changes from other lines of research as well.

We are even beginning to understand the incredible complexity of our gut biome. Our colon is there to take high fiber foods and digest them for us, releasing short chain fatty acids, turning low glycemic vegetables into short chain fatty acids. Bacteroidetes are more abundant in the stool samples of those eating a mostly plant based diet, while Firmicutes were more abundant in those who eat a more animal products diet. From those major families, the specific bacteria Prevotella and Lachnospira were more common in vegetarians and vegans while Streptococcus is more common among the omnivores with higher meat intake.

Can we take this to humans with specific guidelines? Well yes. This is what Longo has come up with. Protein should be about 0.31-0.36 grams per pound per day, of which about 40 grams for women weighing 130 and 60 grams for men weighing 200. Once you hit age 65, you likely need a little more protein, but not that much. Just a little.

Your diet should be rich in healthy fats like olive oil, fish and coconut oil, walnuts and almonds. These fats essentially do the same process of helping you get more calories from fat, like the gorilla. Trans fats and saturated fats are to be avoided. And there should be plenty of Healthy Carbs – the type that make it to your colon and turn into fat. They generally have a glycemic index under 20, or 45 max which would include beans (if you aren’t lectin sensitive). The carbs that get digested in your small bowel and make sugar spikes look like ground flours of any kind, sugar in particular, high fructose corn syrup in double particular, fruit juices or too much modern fruit (modern apples are nowhere near the original Himalayan apple – ditto for pears, bananas, on and on that we have altered in the last 100 years to be much richer in sugar). Most grains are just too rich in carbs to be too good for you, unless you have changed them to be resistant, usually by cooking and then cooling. Same with potatoes. The original potato from Peru was a fine food with a GI of 40. Now it’s a glycemic index of 80-95, unless you boil it and cool it making it resistant. (Is this enough to confuse you a little?)
Finally, cut your meals down to 2 and a snack. Try to fit all your food into 11-12 hours of eating and not for 3 hours before bedtime. Breakfast is NOT the meal to skip as there is plenty of evidence that that habit correlates with many illnesses.

Ok? Next week, we will discuss how to FAST and do it right so that you kick start your genes into being supercharged. It’s cool, and it works.
WWW. What will work for me. This is evidence based and I get it. I’m so fascinated that I drew my own lab tests and started doing it full bore, as much as can be done living in a modern 8-5 work world. It’s the fasting part that has my attention. I’ve completed my first 5 day session and intend to do it again. It wasn’t so hard. More next week.

Pop Quiz


  1. Animal protein appears to shorten longevity? T or F                           Answer: True
  2. We need animal protein to support our healthy brain? T or F          Answer: Again true. Conundrum? Yup. We get B12 only from animal sources. But nature doesn’t care much about you once you have made your babies and passed on your genes.
  3. A high carb diet is bad for you. T or F                                                    Answer: All in the details. High in low glycemic green vegetables, it’s very good for you and is actually a high fat diet.
  4. The über enemy of nutrition is?                                                           Answer: Sugar, fructose in particular when it gets above the 6% found in fruit.
  5. How much protein can I have a day?                                                   Answer: 0.31-0.16 grams per pound when under 65 A little more after. But not much.


Lectin Lesson 4: What Elephants Having Heart Attacks Teaches Us About Cancer

References: Steven Gundry’s The Plant Paradox, CirculationScience Direct,Front Oncol., Glycobiology,

Ok, caught your attention? Elephants having heart attacks? Yes, it’s true. Now, when elephants live in their natural habitat that has sufficient tree and brush forage, they never get a heart attack. In the last couple of hundred years they have lost habitat and been driven to eating grasses. Elephants don’t eat grass when they have natural leaf habitat – they eat leaves. When they eat grass they develop coronary disease, just like us. Why does that happen?
We share an odd and uncommon sugar with elephants. It is called Neu5ac. I’ll call it N-A. It’s a member of the sialic acid family of sugars. We share it with shellfish, chickens and elephants. When we diverged from chimps 8 million years ago, we started making Neu5ac (N-A). Chimps make Neu5gc (N-G). As do every other mammal including the ones we eat like cows, goats, sheep, pigs. This sugar, N-A) is like a signal in our gut cells and our arteries. And grain based lectins bind avidly to it. WGA, the lectin in the wheat germ, binds avidly to it. Avidly. But grain lectins don’t bind to N-G.
Here’s where the link happens. When we eat red meat containing Neu5gc – N-G, your immune system recognizes it as foreign and makes antibodies to it. Those antibodies then turn around and attack your own Neu5ac (N-A) receptors. You get antibodies on your blood vessel walls. You call in white cells. Coronary artery disease is off and running. When elephants eat grasses, they get the same cross reactivity. Something about having grass (wheat) based lectins that attach to Neu5ac and eating the Neu5gc form of the sugars makes for that autoimmune attack.
Now, swing over to cancer. Human cancers have a lot of the Neu5gc protein in them. They put it on their surface as a means of hiding from our immune system. Wait a minute! We don’t make it. Human cells cannot make Neu5gc. Right, we don’t. Then how does the cancer get it? From our eating it in red meat. That may be the link between our eating excessive red meat, and having more cancer. The more red meat you eat, the more N-G you get to supply cancer cells with camouflage. Did you notice that chicken and shell fish don’t have N-G. They have N-A, just like humans and elephants. When you eat chicken and shell fish, you have less risk of heart disease and cancer.

The mechanism that is driving both of these phenomenon is the presence of these sialic acid sugars called Neu5ac versus Neu5gc. Their subtle name difference is the whole universe of immune recognition. That simple little alteration is all it takes for your immune system to go the wrong direction and start a process that leads to the slippery slope of coronary artery disease, or cancer.

WWW. What will work for me. This is a smoking gun. It tells us the clear mechanism by which this elegant, delicate signaling system shifts our immune reaction against either ourselves or against our own immune vessels. Or cancer. It’s simple. We get B12 from red meat. We have to have it. A tiny bit. I mean tiny bit. Seems like we need to start thinking about how we can change the balance of calories. If ketogenic eating is important for our brains, then it has to be with healthy fats, not meat. And it all comes down to those magnificent gentle animals, elephants.

Pop Quiz


  1. Elephants were designed to eat grasses? T or F                                               Answer: False Leaves
  2. When elephants eat grasses they develop what illness in common with humans?           Answer: Coronary artery disease
  3. The key link in the immune response is a lectin binding sugar called?                             Answer: Neu5ac – a member of the sialic acid family of sugars
  4. The principal damaging lectin in wheat, WGA binds to which of the two sialic acids – Neu5gc or Neu5ac?                                                                                                                                Answer: N-A not N-G
  5. Human cancer cells get their camouflage from?                                        Answer:     Red meat Neu5ga.



Birth Control Pills Cause Breast Cancer


Birth Control Pills Cause Cancer

References: NEJM Dec 2017New York Times,

That’s it! They do. Birth control pills increase your risk of breast cancer. The issue should be, how much risk are you willing to take for the benefit of birth control. Pregnancy is not a benign condition either. It has risks. Labor and delivery used to be just about the most common cause of death in women, until we got modern medicine, ultrasounds, sterile technique, etc
What’s the data? The study followed 1.6 million Danish women for over 10 years. Their results showed that for every 100,000 women, birth control use increased risk by 13 women a year, from 55 to 68. Over 40 years, that would be 520 extra cases per 100,000 women. That’s 0.5% lifetime risk. Or, a 20% risk increase over baseline. In percent terms it doesn’t sound huge, and indeed, it isn’t compared to other risks. The study was not able to take into account confounding variable like weight, exercise, other disease, breast feeding, alcohol consumption, etc etc. What about IUD’s with tiny amounts of progestins in them? Nope. Still a problem.
What they also found was that lower doses in modern birth control pills still are risky and the use of “low dose estrogen” really doesn’t add much. And, the progestins (Manufactured artificial progesterone) may actually be the main culprit. If you look at the moleculeprogesterone, and compare it to the molecule medroxyprogesterone, you can quickly see that they aren’t the same thing. They have enough overlap in function to fulfill their duty of hormonal manipulation, but then confuse the body by not setting off the normal biological signaling that the proper molecule provides. The mid cycle surge of LH and FSH is suppressed by lowered free hormones, secondary to elevated Sex Hormone Binding Globulin. You don’t ovulate. Presto.
Are other methods of birth control any safer? You have to go through all the complex math of failure rate and risk of pregnancy, and consequences of pregnancy to come to your own decision. At the end of the day, birth control pills and the IUD are extremely effective at preventing pregnancy, but they do have some risk to them. Ok,, you are informed. (And we didn’t go into the risk reduction of ovarian cancer etc that birth control may help – whole other topic.)
Now, can you soften the risk. You bet. When you do get pregnant, consider breast feeding as your “anti-cancer”, “baby’s brain health”, strategy. For every 6 months of breast feeding, your future risk of breast cancer drops some 15-16 percent – with studies rangingfrom 20% to 60% lifetime risk reduction by getting in the habit and sticking with it.

And then there is iodine, 1 mg a day, Vitamin D to a level of 50, exercise, weight control, Vitamin K2, avoid xenoestrogens (BPA) and eat lots of organic vegetables, and you can keep dropping the risk further.

www.What will work for me. This is one of the most common questions I get asked. How safe are birth control pills. It’s a yin and yang. Life has risks and choices. Driving to my office has risks. Texting on the way is dangerous. What I do tell my clients is please, please take a 6 month sabbatical from birth control every 5 years. And if you don’t want any more children, male or female tubes can be clipped.


Pop Quiz

  1. Birth control pills cause breast cancer by how much?                                          Answer: 13 extra cases per 100,000 women per year – or .5% higher
  2. What is the risk of pregnancy?                                                Answer: in advanced nations with good prenatal health care, 12/100,000 maternal deaths from pregnancy is what WHO provides.   This low rate occurs where  we do not have a targeted strategy for all pregnant women, it’s higher that other parts of the world where risks are up to 200+/100,000 deaths per year from pregnancy
  3. What is the most effective method to lower my risk of breast cancer?                    Answer: breast feed for at least 6 months with every pregnancy. Try for a year.
  4. What other strategies can I do go lower my breast cancer risk?                               Answer: stay slender, exercise, avoid sugar, iodine 1 mg a day, Vitamin D, K2….
  5. Is the IUD any safer?                                                                                                          Answer: No.




Sulfate: Maybe it All begins with Sulfate

Sulfate: Maybe it All begins with Sulfate

References:  Holistic Primary Care,  Theor Biol Med Model,

You’ve probably heard the term -sulfate added on to many medical terms. For example: chondroitin sulfate. You might have shrugged it off like it was just an add on salt, and no big deal. In that, you may be very, very wrong. At least, you are if Stephanie Senneff from MIT is right. At last March’s Clinical and Scientific Insights Conference in San Francisco Dr. Senneff had a breakout session on sulfate and it’s importance. In sum, she argues this is one of the foundational causes of most diseases. Whoa! That’s big. How can she claim that?

Here is her logic based on proven experimental literature and known chemical principles. The sulfate anion, a combination of sulfur and oxygen, is the fourth most common anion in out bodies. It plays many critical roles detoxing drugs, digesting food, building our intracellular matrix, preventing blood from coagulating when passing through tiny capillaries. Lots and lots of roles. And where does it start? Ironically, in your skin with exposure to sunlight. A combination of red cells, cholesterol, sunlight and vitamin D are all necessary ingredients to make the sulfate anion. Senneff describes our skin as our solar powered battery because it extracts the energy of sunlight through the enzyme Endothelial Nitric Oxide Synthetase that turns the energy of sunlight into the sulfate anion in your skin.
At this point, sunlight and sulfate make two new and unrecognized molecules, vitamin D sulfate and cholesterol sulfate. The Vitamin D sulfate is water soluble and can travel everywhere. The Vitamin D you take in a pill doesn’t have the sulfate attached, so can’t dissolve in water (blood) so doesn’t have near the effectiveness of the sulfated form. But ditto for the cholesterol. It’s hard to get sufficient Vitamin D from oral supplementation alone, making sunlight a critical link for good health. Hmmm….don’t you just plain feel better when you get sunlight. The principle remains, many hormones, vitamins, fats have to be sulfated to be transported in the blood.

The foundational necessity of sulfate comes down to the physics of fluid flow in your blood and blood vessels. Cholesterol sulfate lines the outside of red blood cells creating a negatively charged field so that red cells repel each other, allowing them not to stick together as they travel through all your tiny capillaries and not rupture. That same negative charge carried by sulfate creates a behavior of water atoms on the surface of blood vessels that make them super slippery, almost like a teflon surface. In fact, that effect of sulfate may be central to the actual biology of how heart disease gets started. That’s for next week.

WWW.What will work for me. If sulfate is important, where can I get it in my diet? Well, ever wondered why garlic is such a potent herb? Loaded with sulfate! And the whole broccoli, kale, cabbage family. Loads of it. Eggs. Ditto. And sunshine? Yeah, I know the dermatologists goes nuts over too much of it. But without it, you don’t make the sulfate ion in your skin. This may be another clue why Vitamin D studies haven’t always panned out. You can’t just take the pure D3. It’s sulfated D3 that’s the portable form. Like cholesterol sulfate, the portable form. That role of sulfate making our blood vessels slippery makes sulfate central to our bodies being able to be multicellular. It allows us to distribute energy and get rid of gunk. After all, glutathione is based on sulfur. On and on and on. Eat more garlic.

Pop Quiz

1. Sulfate ions are key to making water insoluble compounds soluble and that has its impact felt on what crucial vitamin/hormone?                                Answer: Vitamin D


2. Humans can live without sunlight? T or F                                    False. We get sick, not just from lack of Vitamin D,but also lack of sulfate creation by sun in our skin.


3. Human red cells don’t stick to each other because they have a halo of?                      Answer: Negatively charged sulfate atoms.


4. Blood vessels are slippery because they have a surface layer of water atoms set up by…?                    Answer: Negatively charged sulfate atoms


5. I can get more sulfate in my diet by eating what foods?                                   Answer: Kale, garlic, eggs, broccoli, Brussel’s sprouts.


Black Tea and C-Reactive Protein‬

Black Tea and C-Reactive Protein

Reference: Toxicology, ResearchGate,

I drink black tea. Quite a lot, in fact. I like chai. I’m also on the quest to find how to lower C-reactive protein. When I see research that addresses both topics, I pay attention. This is interesting.

The study design was pretty simple. Three cups of black tea a day, with no additives, for 12 weeks. The control group drank hot water. The groups were large enough to show statistically significant drops in uric acid of 8-9% across the various ranges of uric acid. And better, C-reactive protein, the common pathway for inflammation, fell by 40-50% in folks with levels over 3 mg %. Now, 50% drop is a lot! The goal is to get folks to below 1.0 on their CRP. So a 50% drop from 3 gets you to 1.5. Almost there!

From the same study, published in a different journal, was evidence of what happened to other markers of cardiovascular risk. Again, the same 12 week period with three cups of tea a day. The tea had high levels of gallic acid derivatives (50 ± 0.4 mg/L), flavan-3-ols (42 ± 2 mg/L), flavonols (32 ± 1 mg/L) and theaflavins (90 ± 1 mg/L). (All good things). The metabolic changes were quite striking: a fasting serum glucose decrease of 18.4%; (p<0.001) and triglyceride level decrease of 35.8%; (p<0.01), a significant decrease in LDL/HDL plasma cholesterol ratio (16.6%; p<0.05) and a non significant increase in HDL plasma cholesterol levels 20.3%. For those who have read this column and gotten facile at glucose and its effect on blood lipids, you would understand it all as the same phenomenon.

To recap: a lower blood glucose means less insulin. Less insulin means less instructions to the liver to manufacture triglycerides and LDLs. With fewer LDLs and triglycerides to manufacture and ship out to fat cells, HDLs will rise. The real primary effect is on glucose with all the others following. Small, dense LDLs, stimulated by high glucose levels, drive heart disease, so there you have it. All these risk factors stem from elevated glucose.

Guess where this study came from? Mauritius! Not the common place for research. But they are looking at life style and food. Just what we need.

WWW. What will work for me. I feel too buzzed with coffee and don’t like all the caffeine. Tea is gentler. But I spend all day with my clients trying to find ways to lower CRP. Lots of folks have mildly elevated level. To know that we can drop it 30-40% with 3 cups of tea. In Afghanistan, 3 Cups of Tea means you are a friend. Same effect in America.

Pop Quiz:

‪1. Three cups of tea will lower your CRP by 40-50%? T or F

True. Black tea.

‪2. I can also lower my triglycerides with black tea. T or F


‪3. Uric acid, unfortunately, goes up with black tea. T or F

Gotcha. Read it again. Uric acid goes down. Another good thing

‪4. High blood glucose results in high blood lipids. T or F

Simple as that. True. Glucose is the real story for causing heart disease, not blood fats.

‪5. This research was done in a place that drinks a lot of tea and doesn’t have much pharmaceutical company influence. T or F


Cancer Risk Drops with Vitamin D

Cut the Risk of Cancer with Vitamin D

Reference Science News, PLOS One,

Let’s get to the chase. The Institute of Medicine, the supposed gurus and final authority of truth, justice, and the American way decided that a level of 20 ng was enough for humans, and could be achieved in most Americans with a supplement of 600 IU a day. They basically looked at bone health as having the strongest evidence, and claimed that everything else was still too uncertain. That represented a 50% increase from 400 IU a day. It seemed a bit conservative because a 20 year old Caucasian will make 1000 IU in 1 minute of sunshine in June.   Heavens forbid you get more than 36 seconds of sunshine. It seemed overly cautious.

But there has been debate about it because we haven’t had good studies comparing populations and the effects of higher doses. Ok, at least until now. Here, Cedric Garland, faculty from UCSD Medical School compared cancer rates from two populations of women who had Vitamin D levels measured.   In one clinical study, 1,169 women had an average level of Vitamin D of 30 ng and a cancer rate of 1,020 per 100,000 years. In the second prospective trial, they had a Vitamin D level of 48 and a cancer rate of 722 per 100,000 years.

What does that turn into in regards to risk? That’s the bottom line. They essentially found a linear risk of cancer based on Vitamin D level, with a 67% increased risk if your D was below 20 compared to over 48.   That compares favorably to another study published last month that I didn’t review on prostate cancer that shows higher rates of aggressive prostate cancer with lower vitamin D levels.

How does Vitamin D do this? The core role of Vitamin D is to signal cells to become mature and do their function.   Cancer cells never become fully mature. Mature cells have a natural ticking clock which runs out and includes cell death. That’s why we die at age…90-120. It’s the Hayflick Limit. Cancer cells don’t have that. Vitamin D helps set it in motion. Vitamin D is preserved in every living being from Plankton to Humans, and does that function in all of us. And that’s why it has so many myriad activities.

I believe there are several reasons why our research on populations has failed to show much effect yet. The human body is designed to soak up D and save it for a rainy day. It takes a year to get to a new blood level when you change doses. If you do a study that lasts only 1-3 years, the first year is just getting up to speed.   You need to start any study with a loading dose to make sure folks get their blood levels up fast. There is good evidence that 100,000 IU all at once will raise your blood level 14 ng. And no one takes into account skin pigment and its effect on D.   More pigment, more sunshine needed. Dark, African type skin requires up to 6 times as much sunlight. So African-Americans living far up north have much lower Vitamin D levels (12-16 is average) and have much more aggressive breast and prostate cancer than Caucasian folks.

www. What will work for me.   Goodness. My D was 7 when I measured it 15 years ago. I take 20,000 IU a week and my level stays pretty reliably in the 40s. My skin has several cancers on it that is keeping my dermatologist fully employed, so I don’t want any more sunlight than I have to have. And being closer to 70 than 20, I don’t make more D anyways. If I get a cold, I boost my D by taking an extra dose of 50,000 for three days.


Pop Quiz

  1. Our current guidelines for Vitamin D suggest 600 IU a day is enough. T or F


  1. That level of D supplementation will get your blood level to 20 ng. T or F


  1. This study shows that you will have a 69% higher risk for cancer with that blood level.   T or F

In a nutshell, true

  1. Vitamin D has the function of making cells more immature and die later. T or F

False! It makes them die sooner and become more mature.

  1. Folks with skin pigment probably need more supplementation to lower their D levels further. T or F

They need the D to raise their levels, and that will lower their risk of cancer.

Alkaline Diet Slows Down Cancer

Alkaline Diets Slow Down Cancer

Reference: Science Daily Feb 2016

The pH of your cells is normally ever so slightly alkaline on the outside, and ever so slightly acidic on the outside.   Absolutely neutral pH is 7.0, and 7.2-7.6 is what you find on the outside of normal cells.   Cancer cells have a pH roughly 0.4 units below that on the outside.   And what is so interesting is that the opposite occurs on the inside. Normal cells are every so slightly acidic on the inside, and cancer cells are more so.

Now, rapidly growing cells have a transient reversal of their alkaline, acidic pH gradient. And cancer cells even more so. In fact, it is a hallmark of cancer that they are persistent in their reverse gradient of pH. Very acidic environments are toxic to normal cells, and are quite happily tolerated by cancer cells, giving cancer cells an advantage to grow and spread.   That acidity up-regulates proteolysis, genomic instability, immunosuppression, therapeutic resistance and angiogenesis – all hallmarks of what cancer does to destroy tissue.   This reversal happens quite early in the life of a cancer, and may, in fact be essential for cancer so get started.   Cancers have a more alkaline internal pH and this turns on glucose burning, giving them energy.   Normally, if you have broken DNA, you naturally go into cell death. Well, if you are alkaline internally, and acidic externally (like with cancer) you don’t.   The extra changes also encourage cells to bypass their G2-M transition, which is the last check point before doubling.   Without that checkpoint, cells multiple faster.

Ok, so to summarize it and make it simpler: just about everything that makes cancer succeed comes about because of this reversal of their alkaline acidic gradient.

And the reason we are writing about it is because of its implications for the care of cancer.   A diet rich in alkaline foods will thereby make it harder for cancer to get started, and to succeed. What is that diet?   Rich in vegetables.   Or, let’s get to the heart of it. Rich in alkaline substances.   That basically comes down to magnesium and potassium, and less sodium. Now, in Western society, our food supply has changed rather dramatically in the last two hundred years.   What once was a diet with potassium to sodium of 8:1 is now a diet of potassium to sodium of 1:4, roughly a 32 fold shift, with sodium now dominating. There are all sorts of research articles documenting risk reduction in mortality with shifting your potassium sodium ratio to more potassium and less sodium. More veges, less breast cancer. And it’s not the food so much as the processing that makes it bad.   100 gram of pork, for example, has 61 mg of sodium, and 340 of potassium. That’s a good ratio. Ham, however, has 921 mg of sodium and only 240 of potassium.

There have been numerous cancer programs that have talked about this in the past. The Kelly Protocol makes an art of it by juicing vegetables (that gets all the potassium and magnesium salts out of the veges). There are other ways you can alkalinize yourself. The difference between an acidic diet and an alkaline diet is only some 20 meq. That comes down to a tsp or two of sodium bicarb. Add bicarb to your diet every day, and you accomplish much of the same effect.

www.What Will Work for me.   We now have attention to this being paid by the formal world of oncology. Us regular folks ought to take heed.   Eat more vegetables. You can have animal, just not processed with extra salt. Or else you better have some bicarb. Did I mention more vegetables? Fresh, steamed. (Why steaming? – because all that green water you pour off is all the alkalizing salts.)


Pop Quiz


  1. Cancer cells normally have a more acidic environment on the outside of them, meaning a lower pH. T or F

That’s it in a nutshell.

  1. Normal cells live in a world of slightly alkaline external pH. T or F

Again, bingo.

  1. The American diet has switched from alkaline to acidic by our modern processing, which essentially comes down to a whole lot more salt. T or F


  1. Meat is naturally abundant in potassium, compared to sodium. T or F


  1. The difference between an acidic diet and an alkaline diet is two tsps of bicarb. T or F


What Carbs Should I Eat?

What Carbs Should I Eat?

Reference: Low Glycemic Food Table, Cox Diabetes Clin Research, J. Geriatrics Oct 2015, Paleo Diet Glycemic Index,

We humans are a unique bunch. We developed big, energy hungry brains in the last 2 million years. To keep that development moving along, we had to adapt to diets with more calories in it. Fat provides more calories.   Eating animals provides a great way to get more fat. Cooking allows plants to be easier to digest and get access to more calories.   Cooking started, by our best archeological guess, over a million years ago. But prior to that, we had a metabolism set by mammalian history over 65 million years since the dinosaurs crashed out of existence and the first mammal crawled out its den.

Those first mammals were vegetarians. And likely remained mostly so except for those branches that turned into top tier carnivores. Carnivores develop different teeth, different intestines, different metabolisms. Most hominids (monkeys and apes) remained vegetarian. To this day, they are still mostly vege munchers.   Orangutans eat some 20-25 pounds of green plants a day – leaves. With fruit season, they switch to pure fruit for two months and eat sweet sugar and gain weight. Chimps do the same. They eat some 150 different plants but prefer fruit when its around. Once in a while they chance upon a small mammal they kill and eat, but it’s rare. And you can’t count the few ants they lick off sticks as a major component of their caloric intake. Humans got big brains and smaller muscles.

That’s the world we came from, plant eaters. Hence, our basic, core metabolism started about being adapted to plants.   Plants make carbohydrates.   As a rule, there are two kinds of plant foods.   Leaves and stems (spinach and broccoli) are green, have carbohydrate bound up in the cell well, have a lot of fiber and often as much protein as carbohydrate.   Roots and fruits are the other class of plants that result from the plant storing carbohydrate, often with the seed for propagation. (Think potatoes, apples, corn, rice, pears, almonds, walnuts, cherries.)

In that world, we adapted our hormones that manage carbohydrates to absorb and use the fuel we got from them.   That fuel is glucose and a tiny bit of rare fats, usually in the form of omega fats but sometime saturated fat like coconuts.

What is the hormone most tasked with managing carbohydrates? Insulin!   (And about 30 others in a beautiful nuanced ballet of control.) But insulin is the big kahuna of carbohydrate control. Insulin pushes glucose into fat storage. We secrete insulin in proportion to the rate of rise of blood glucose.   Green plants release glucose so slowly, usually because the fiber is spinach, broccoli (etc) pushes the food down into the colon where our biome releases it for us to use, very, very slowly.   So slowly, in fact, that you almost don’t need any insulin at all.

But potatoes and mangos cause a jolt in blood glucose, and insulin surges with the result that we then store those calories as fat. Getting fat once a year before a long spell of reduced calories makes sense. But it doesn’t make sense year around.

Insulin lasts 6-8 hours.   Think about that. If insulin lasts that long, throughout most of our evolutionary history, the majority of our food must have been of they type that releases glucose over the time period that insulin lasts.   It would not make sense to have foods that make us secrete insulin dramatically and push calories into storage.   Hence, those are the foods we are best served eating the most of.

Did you get that?   Green plants that release glucose over 6-8 hours are our perfect match. They fit our basic hormone of glucose metabolism to a T.   We call them “low glycemic” or cucumbers, Brussel’s sprouts, asparagus, cabbage, spinach, lettuce, – or any green plant that grows above ground.   Green peppers, eggplant probably fit too.

WWW.   What will work for me? We were designed, one way or another, to eat lots of green plants. Lots and lots. And some fat and protein whenever we could. But the green plants came first.   If you did that today, you would be skinnier, healthier, have less cancer, less heart disease, less diabetes. We could call it the alkaline diet, the Pritikin diet, the Esselstyn diet, the anti cancer diet.   Or just the human diet. Enjoy Thanksgiving!


Pop Quiz


  1. Insulin pushes sugar into storage to it should be called our blood glucose controlling hormone. T or F

False, false, false. Way too simplistic, thought that’s what modern health care calls it.   It is our storage hormone, waiting there for you to find caches of free carbs in that month just before winter, (aka, Thanksgiving)

  1. We are designed to eat potatoes year around. T or F

False, false, false. Potatoes dramatically push glucose into your blood, forcing your to make insulin, forcing you to manufacture fat, forcing your LDLs up, forcing your to get fat. You want potatoes only when you want to store fat so that you can make it through winter. (aka: Thanksgiving)

  1. Our brains need a lot of calories, easily supplied with a raw, vegan, green diet. T or F

False, false, false.   Our big, energy hungry brains want fat and B12 is critical for survival. No B12 in plants. Found only in animal.   (Think Turkey)

  1. Insulin lasts 6-8 hours. That suggests that most of our carbohydrate calories should come from foods that release their glucose over 6-8 hours. T or F

That’s the hypothesis of this treatise.

  1. Humans like to have a big feed when they can? T or F

True. It’s how we express love and affection for each other when we can find all those calories. (Think Thanksgiving)

  1. It’s ok to get fat once in while.

Another premise of this talk: we have put one weight and lost weitht throughut human history. So, enjoy putting it on once in a while. Make sure you do it with lots of love and company.   (Think Thanksgiving)

  1. So Happy Thanksgiving.


Beta-Glucans and Immune Function

Beta Glucan: Immune Booster

Reference: Nutrition Journal 2014

Published:  Nov 16, 2015

Ever heard of the immune boosting effect of mushrooms? Of course. Shiitake mushrooms from Japan or Lengzhi         from China have been used in Asia for millennia to boost immune function. They exist in the cell walls of yeast, fungi and some seaweeds.. They play an important role in the building blocks of the cell wall of yeast and fungi.   We are familiar with cellulose, the building block of wood and trees.   That is a β-glucan linked from the 1 to the 4 positions of adjacent glucose molecules.   It plays no role in immune modulation, but it sure holds trees together nicely.   The β-glucans we are interested in are linked at the 1-3 position.   What we call starch or glycogen is made of glucoses hooked together at the 1-4 or 1-6 site. So, β-glucan is only slightly different than cellulose (wood) or glycogen (human) or starch (potato, rice, bread). They are all glucose molecules hooked together at different places on the glucose molecule. Humans can neither digest or synthesize β-glucans, hence we have to recognize them as foreign.

And that is precisely what your immune system measures and evaluates – the different structures and connections of glucose on the surface of various invaders – bacteria in particular. It only makes sense that your immune system would get a boost. Yeast have β- glucan on their surface.   We don’t want yeast to invade you.

Β-glucan becomes a useful tool to “boost” your immune system.  And yeast becomes the means by which we can “manufacture” it as a supplement.

What do they do inside you? Well, your gut M cells (FBI of the gut) identify them, capture them, transport them into your Peyer’s patches in your gut from whence they are transported to local lymph nodes, spleen and bone marrow.   In the bone marrow you can show that granulocytes get activated and proceed to go out and kill tumor cells.  But wait, there is more. You also activate the B cell branch of your immune system that makes antibodies.   That requires you to absorb bigger chunks of β-glucan that are too big to dissolve in water. And your phagocytes (those cells that gobble up bacteria whole) get equally turned on with β-glucan.   This means that just about every arm of your immune system gets activated, turned on, focused.

Is there research to support that taking β-glucan as a supplement will reduce illness? Well yes.   Auinger showed decreased colds in a randomized, controlled trial from Europe in 2013. Graubaum showed the same in 2012. He gave 100 subjects β-glucan for 26 weeks and demonstrated a significant reduction in colds and progression of colds to severe symptoms.

And then there is cancer.   We don’t have good randomized studies yet, but tons of testimonials claiming otherwise unexplained improvement. Testimonials shouldn’t be taken as proof, but they should be taken seriously as cause for curiosity. The mechanisms make sense. And cancer succeeds by tamping down the immune system, reducing fever and generally hiding from the immune system. Β-glucans reawaken that masking effect.

Now, the European Food Safety panel has evaluated the efficacy of β-glucan for the prevention of colds and rejected the claim based on criticism that the questionnaire used to evaluate cold symtpoms has not been validated.   So, there you have it. There is pretty good evidence that it works, with in vivo experiments down to the bone marrow. There are statistical studies showing less colds, but using research methods that don’t quite pass muster.   And you have a couple thousand years of Chinese and Japanese healers noting that it works. You decide.

WWW. What will work for me.   Well, I’m stymied by the number of colds I get when I travel. Sitting on an airplane with 300 other people in close quarters seems to be risky. I’m going to try it this winter. And I think it makes sense for anyone with cancer to add Shiitake mushrooms or β-glucan supplements to their regimen. Maybe not every day, but at least once a week.


Pop Quiz


  1. β-glucans are closely related to glucose? T or F

True. They are branched strings of glucose hooked together in a way we can’t digest.

  1. In nature, β-glucans show up in mushrooms, fungi, yeast and seaweed. T or F


  1. Our gut immune system rejects β-glucans and refuses to digest them. T or F

False. We don’t digest them, that’s true but we take them up and ship them all over our bodies, even to our bone marrow where we turn on our immune system to recognize them.

  1. There are pretty good studies that show they reduce the symptoms of the common cold. T or F

True, if you accept the questionnaire that has not been validated as good enough.

  1. There is no evidence that β-glucans are toxic.


  1. If you had cancer, there are plausible mechanisms shown to explain why so many people claim to have great results with β-glucans in slowing down their cancer.

True. With a lot less toxicity than many of our current chemo drugs.